高数都学什么

想学高数如果想自学都需要学什么 高数都有什么 请高手指点迷津

如果是自学,要求不太高,不要学什么数学分析,工科数学分析,比较难;数学分析一般是数学系的人学。
高等数学和线性代数一般学校是分开上。
高等数学的内容如下:
1.一元函数的极限和连续。理论证明比如ε-N,ε-X,ε-δ,不需学得深;夹逼定理和单调有界蛮重要的,一些等价代换要掌握;函数的连续性好好学,不难.
2.一元函数微分学.求导一定一定要学好,否则你学定积分就要痛苦了;微分的实质是求导;微分学基本定理,lagrange中值定理一定要好好学,证明题基本靠它;L'Hospital相当重要;泰勒公式证明题中常用.
3.一元函数积分学.变限函数好好学吧;分部积分法和换元积分法也好好学吧;这部分内容会有大量的应用题.
4.常微分方程.具体内容不说了,反正不难,但很烦很烦,把公式背背熟就可以了.
5.多元函数微分学.不止是多元,内容是多多了.复变函数出来了.
6.多元函数积分学.二重、三重积分出来了,涉及第一型曲线及曲面计算。
7.向量函数的积分。涉及第二型曲线和曲面的计算。
8.复变函数的积分。柯西积分定理是基础是重点,lz看着办吧。
9.常数项级数。
10.函数项级数。
lz,线形代数要学,否则高数后面的内容你会学得很费劲;但是,线形代数也是很烦的,因为内容实在太多了,但都不是很深,基本围绕三点:用矩阵解方程组、用矩阵解释二次型、特征值及其变换(正交变换很重要)。
希望能对lz所有帮助。
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-02-05
高等数学分为几个部分为:
一、函数 极限 连续
二、一元函数微分学
三、一元函数积分学
四、向量代数与空间解析几何
五、多元函数微分学
六、多元函数积分学
七、无穷级数
八、常微分方程
高数主要包括
一、 函数与极限分为
常量与变量
函数
函数的简单性态
反函数
初等函数
数列的极限
函数的极限
无穷大量与无穷小量
无穷小量的比较
函数连续性
连续函数的性质及初等函数函数连续性
二、导数与微分
导数的概念
函数的和、差求导法则
函数的积、商求导法则
复合函数求导法则
反函数求导法则
高阶导数
隐函数及其求导法则
函数的微分
三、导数的应用
微分中值定理
未定式问题
函数单调性的判定法
函数的极值及其求法
函数的最大、最小值及其应用
曲线的凹向与拐点
四、不定积分
不定积分的概念及性质
求不定积分的方法
几种特殊函数的积分举例
五、定积分及其应用
定积分的概念
微积分的积分公式
定积分的换元法与分部积分法
广义积分
六、空间解析几何
空间直角坐标系
方向余弦与方向数
平面与空间直线
曲面与空间曲线
八、多元函数的微分学
多元函数概念
二元函数极限及其连续性
偏导数
全微分
多元复合函数的求导法
多元函数的极值
九、多元函数积分学
二重积分的概念及性质
二重积分的计算法
三重积分的概念及其计算法
十、常微分方程
微分方程的基本概念
可分离变量的微分方程及齐次方程
线性微分方程
可降阶的高阶方程
线性微分方程解的结构
二阶常系数齐次线性方程的解法
二阶常系数非齐次线性方程的解法
十一、无穷级数
第2个回答  2009-01-24
其实很简单!(前面的)呵呵不过从前往后一直学(保障都会..)就不会难了!买书去自己看,反正不容易有些是书上没有的,而老师会告诉你的。自己学很枯燥的啊!只要想学就不会难的!
第3个回答  2009-02-03
呵呵,需要的是恒心和毅力 高数最难的是同济大学第五版(非数学专业),其次还有线性代数和概率和统计,另外买本答案书还好点!
第4个回答  2009-01-24
微积分,线性代数,概率论与数理统计。
最主要是学好微积分,它是其它学科的基础,而且考研占得比重也是最大的,不过也有些难度。
其它两门相对来说比较好学,但学好高数还要多做题,做的题多了,自然就学好了。
祝你学好高等数学~~~

高数要什么基础
1. 基本数学知识,包括算术、初等代数、几何和三角学等,为高等数学学习提供理论基础。2. 线性代数,是研究向量空间性质的数学学科,是学习高等数学中许多领域的基础。3. 解析几何,研究空间中点、线、面的关系,为学习高等数学中的曲线和曲面、曲率等概念提供基础。4. 微积分,研究函数的极限、导数、积...

大学高数都包括哪些内容
大学高数的内容主要涉及以下几个方面:微积分,是大学高数的基础,包含极限、导数、微分与积分,广泛应用于数学、物理、工程等领域。微分方程,用于描述变化过程或运动方式,结合微积分知识与应用,常微分方程描述变量与自变量的函数关系,偏导数则涉及多元函数极值问题,应用广泛于物理学、工程学。傅里叶分析...

高数是什么?
广义高等数学是指初等数学之外的数学,通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一个学科。主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。高等数学是一门基础学科,其特点是高度的抽象性、严密的逻辑性和广泛的应用性。初等数学研究...

大学里的高等数学,分为几大部分啊?
一、函数 极限 连续 二、一元函数微分学 三、一元函数积分学 四、向量代数与空间解析几何 五、多元函数微分学 六、多元函数积分学 七、无穷级数 八、常微分方程 高数主要包括 一、 函数与极限分为 常量与变量 函数 函数的简单性态 反函数 初等函数 数列的极限 函数的极限 无穷大量与无穷小量 无穷小...

学高数有什么用呢?
高数主要学:导数,微分,一重积分,二重积分,曲线积分,曲面积分,都是很搞的东西,但是花点时间都不难。还会学一些空间几何的问题,空间直线和平面等。大学都是过关性考试,不是像高考一样的选拔性考试,所以不难过,也没必要钻研难题。考前要多做历年的考题,期末同学间会流传,一定要做,帮助很大,...

大学高数学什么
大学高数主要学:函数、集合、初等函数、复合函数、基本初等函数、函数的极限、数列的极限、数列极限的性质、函数的极限、左极限和右极限、极限的性质和运算、导数与微分、中值定理、不定积分、定积分及其应用、微分方程等等。

大学高数都包括哪些内容
概率论与数理统计是大学高数中重要的应用数学分支,它涉及到随机事件、随机变量、分布函数、统计推断等方面的知识。在自然科学、工程学、经济学等领域都有广泛应用。例如,在经济学中,概率论与数理统计被用来分析市场波动。数值分析是研究数值解和数值算法的学科,它涉及到微积分、线性代数、插值法、逼近法...

什么是高数
高等数学在多领域都有广泛应用,如物理、化学、生物、工程、计算机科学等。它是进行科学研究和技术创新的重要工具。此外,高等数学也是大学许多专业的重要课程,为学生后续的专业学习奠定坚实基础。4. 学习挑战与意义 学习高等数学可能会面临一些挑战,如抽象概念的理解、复杂计算的掌握等。但通过学习高数,...

想知道高数是什么?
一般来说,理工科一定要学习,例如物理学,化学,数学专业,机械工程,电机电子工程,土木工程等等。文科的话,一些科目也要学习,例如经济学,会计学,地理学,因为有些题目涉及高数应用。但语言类和艺术类的话,这些都用不到高数当然不用学习,例如英语专业,日语专业,艺术影视,体育,陶艺专业,品酒,...

大学高数分几部分学习啊?
高等数学一通常包括以下内容:极限、连续性、微分学、积分学和微积分学初步等。高等数学二通常包括以下内容:常微分方程、多元函数微积分学、多元函数微积分中的常微分方程及其应用、级数及其应用、傅里叶级数和傅里叶变换等。高等数学三则通常包括以下内容:向量、空间解析几何、多元函数微积分学综合应用、...

相似回答