在1,2,3,4,5,...,2005的每一个数字前面任意添加"+''号或-''号,然后...
所以,我们考虑,到2005,一共2005个数字,1+2005为偶数 2+2004为偶数 ...所以 (1+2005)\/2=1003 也就是说,全部数加起来,最后只有剩一个1003是奇数加上去 偶数+奇数,所以最后应该是奇数 以上个人想法,讨论讨论
在1、2、3、4、5...2005的每一个数前面任意添加+号和-号、求它们的和...
把x前的一个+换成- 则共少了2x 结果为:奇数-2x 还为奇数 所以是奇数
在1,2,3,4,5……2005的每一个数前面任意添加“+”号或“-”号,
偶±偶=偶 奇±奇=偶 奇±偶=奇 1。。。2005 共2005个数 其中有奇数1003个偶数1002个 奇数1002个与偶数1002个无论加减 结果是偶数 算上最后1个奇数 无论加减 结果是奇数
在1,2,3,…,2005这2005个数的前面任意添加一个正号或负号,其代数和是...
∵在1,2,3,…,2005这2005个数中,奇数有奇数个,∴这2005个数的和为奇数,而当某个数的前面任意添加一个正号或负号,不会改变算式的奇偶性,即这2005个数的代数和为奇数.故本题答案为:奇数.
求1、2、3、4、5...,2004,2005这些自然数所有数字的和是多少
1+1998=1999 2+1997=1999 3+1996=1999 。。。999+1000=1999 1999=1+9+9+9 数字和都是1+9+9+9=28 共1000组,和为28*1000=28000 2000,2001,2002,2003,2004,2005数字和=2+3+4+5+6+7=27 所以 1、2、3、4、5...,2004,2005这些自然数所有数字的和是28000+27=28027 ...
将1,2,3,4,5,…,2009,2010,2011,这些连续的自然数前任意添加正负号,则...
选b。。是偶数,首先cd不可能(d是非负整数么。。。然后看ab。。然后就选b了
在1.2.3.4...2003的每个数前面任意添加一个+或-,这时它们的和是奇数还是...
奇数加(减)奇数为偶数,偶数加(减)偶数也为偶数。在前2002个数中有1001个奇数,1001个偶数。可以这么想,数的位置可以调换,则前1001个奇数得到的是一个奇数,而前1001个偶数得到的是一个偶数。这个奇数和2003得到一个偶数,而最后这个偶数和偶数得到一个偶数。举个例子,1+2+3+4+……+2003=...
在1,2,3,……2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶...
两个奇数无论是相加还是相减都会变成偶数,两个偶数无论加减都还是偶数,因此就可以把两个奇数看作是一个偶数。在1~2005中有1003个奇数,互相加减后应该还剩一个奇数。把所有的偶数加起来后还剩最后一个奇数,所以加起来就是……奇数。答案是奇数。
在123省略号2021这组数的每个数前面任意添加一个正号和负号它们的代数和...
∵在1,2,3,…,2005这2005个数中,奇数有奇数个,∴这2005个数的和为奇数,而当某个数的前面任意添加一个正号或负号,不会改变算式的奇偶性,即这2005个数的代数和为奇数.故本题答案为:奇数.
将1,2,3,4,5,…2009,2010,2011这些连续的自然数前任意添加正负号,再...
由于共有1005个偶数,1006个奇数。因此可使其加减和绝对值最小为0。比如:(1+2-3)+(4-5-6+7)+(8-9-10+11)+...+(2008-2009-2010+2011)=0。最小绝对值是零。简介 自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着...