需要 六年级 难度适中数学题目和解法

急求急求!

再次谢谢各位了……
今天晚上之前,就要!!!
尽量使下半学期的!!!!

(一)分数应用题的构建
分数应用题主要讨论的是以下三者之间的关系:
(1) 分率:(2)标准量:(3)比较量:
(二)分数应用题的分类
(1)求一个数的几分之几是多少:标准量×几几 (分率)=是多少(分率对应的比较量)。
(2)求比一个数多几分之几多多少:标准量×几几 (分率)=多多少(分率对应的比较量)。
(3)求比一个数多几分之几是多少:标准量×(1 + 几几 )(分率)=是多少(分率对应的比较量)。
(4)求比一个数少几分之几少多少:标准量×几几 (分率)=少多少(分率对应的比较量)。
(5)求比一个数少几分之几是多少:标准量×(1 - 几几 )(分率)=是多少(分率对应的比较量)。
2、 求一个数是另一个数的几分之几。这类问题特点是已知两个数量,比较它们之间的
倍数关系,解这类应用题用除法。基本的数量关系是:比较量÷标准量=分率。
(1)求一个数是另一个数的几分之几: 比较量÷标准量=分率(几分之几)。
(2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。
(3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。
3、已知一个数的几分之几是多少,求这个数。这类问题特点是已知一个数的几分之几
是多少的数量,求单位“1”的量,解这类应用题用除法。基本的数量关系是:分率对应的比较量÷分率=标准量。
(1)已知一个数的几分之几是多少,求这个数: 是多少(分率对应的比较量)÷几几 (分率)=标准量。
(2)已知一个数比另一个数多几分之几多多少,求这个数:多多少(分率对应的比较量)÷几几 (分率)=标准量。
(3)已知一个数比另一个数多几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 + 几几 )(分率)=标准量。
(4)已知一个数比另一个数少几分之几少多少,求这个数:少多少(分率对应的比较量)÷几几 (分率)=标准量。
(5)已知一个数比另一个数少几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 –几几 )(分率)=标准量。
(三)分数应用题的基本训练
量、率对应关系训练
量、率对应关系的训练是解较复杂分数应用题的重要环节。通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。如:一批货物,第一次运走总数的15 ,第二次运走总数的14 ,还剩下143吨。量、率对应关系有:
货物的总重量 “1” 第一次运走的重量 15
第二次运走的重量 14 两次工运走的重量 15 + 14
第一次比第二次少运的重量 14 — 15
第一次运走后剩下的重量 1—15
143吨 1— 15 — 14
3、 转化分率训练
在解较复杂的分数应用题时,常需要将间接分率转化为直接运用于解题的分率。(1)已修总长的58 ,则未修是总长的1 — 58 = 38 ;(2)甲班人数是乙班的89 ,则乙班人数是甲班的98 ;(3)今年比去年增产15 ,则今年产量是去年的1 + 15 = 115 ;(4)第一次运走总数的14 ,第二次运走剩下的15 ,则第二次运走的是总数的 [(1 — 14 ) × 15 ] = 320 等。
4、 由分率句到数量关系式训练
“分率句 数量关系式”的训练,是确保正确列式解题的训练。如:由“男生比女生少14 ”可列数量关系式:
女生人数 ×(1 — 14 )= 男生人数; 女生人数×14 = 男生比女生少的人数;
男生人数 ÷(1 — 14 )= 女生人数; 男生比女生少的人数÷14 =女生人数。
二、分析解答
1、求一个数的几分之几是多少。
(1) 求一个数的几分之几是多少: 标准量×几几 (分率)=是多少(分率对应的比较量)。
例1:学校买来100千克白菜,吃了45 ,吃了多少千克?(反映整体与部分之间的关系。)
白菜的总重量×45 = 吃了的重量
100 ×45 = 80 (千克)
答:吃了80千克。
例2:一个排球定价60元,篮球的价格是排球的56 。篮球的价格是多少元?(反映甲乙两数之间的关系。) 排球的价格×56 = 篮球的价格
60 ×56 = 50 (元)
答:篮球的价格是50元。
例3:小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的12 。小新体重是多少千克?(两个数量的和做为标准量。)
(小红体重 + 小云体重)× 12 = 小新体重
(42 +40)× = 41 (千克)
答:小新体重41千克。
例4: 有一摞纸,共120张。第一次用了它的35 ,第二次用了它的16 ,两次一共用了多少张纸?(所求数量对应的分率是两个分率的和。)
纸的总张数×(35 + 16 )=两次共用的张数
120×(35 + 16 )=92(张)
答:两次共用92张。
例5:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的14 ,其它国家约有多少只?(所求数量对应的分率没有直接告诉。)
野生丹顶鹤的总只数×(1 — 14 )= 其它国家的只数
2000×(1 — 14 )= 1500(只)
答:其它国家约有1500只。
例6:小亮储蓄箱中有18元,小华储蓄的钱是小亮的56 ,小新储蓄的钱是小华的23 。小新储蓄多少钱?(有两个单位“1”的量且都已知。)
小亮储蓄的钱× 56 ×23 = 小新储蓄的钱
18 × 56 ×23 = 10(元)
答:小新储蓄10元。
(2) 求比一个数多几分之几多多少:标准量×几几 (分率)=多多少(分率对应的比较量)。
例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心
跳的次数比青少年多45 。婴儿每分钟心跳比青少年多多少次?(所求数量和已知分率直接对应。) 青少年每分钟心跳次数×45 = 婴儿每分钟心跳比青少年多跳的次数
75 ×45 = 60(次)
答:婴儿每分钟心跳比青少年多跳60次。
(3)求比一个数多几分之几是多少:标准量×(1 + 几几 )(分率)=是多少(分率对应的比较量)。
例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多45 。婴儿每分钟心跳多少次?(需将分率转化成所求数量对应的分率。)
青少年每分钟心跳次数 ×(1 + 45 )=婴儿每分钟心跳的次数
75 × (1 + 45 )=135(次)
答:婴儿每分钟心跳135次。
例2:学校有20个足球,篮球比足球多 14 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数×(1+ 14 )=篮球的个数
20×(1+ 14 )=25(个)
答:篮球有25个。
(4)求比一个数少几分之几少多少:标准量×几几 (分率)=少多少(分率对应的比较量)。
例1:学校有20个足球,篮球比足球少 15 ,篮球比足球少多少个? (所求数量和已知分率直接对应。) 足球的个数×15 = 篮球比足球少的个数
20×15 = 4(个)
答:篮球比足球少4个。
(5)求比一个数少几分之几是多少:标准量×(1 - 几几 )(分率)=是多少(分率对应的比较量)。
例1:学校有20个足球,篮球比足球少 15 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数×(1 — 15 )=篮球的个数
20×(1 — 15 )=16(个)
答:篮球有16个。
例2:一种服装原价105元,现在降价27 ,现在售价多少元?(需将分率转化成所求数量对应的分率。) 服装的原价×(1 —27 )= 现在售价
105×(1 — 27 )=75(元)
答:现在售价是75元。
2、求一个数是另一个数的几分之几。
(1)求一个数是另一个数的几分之几: 比较量÷标准量=分率(几分之几)。
例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数是苹果树的几分之几?(找准标准量。) 梨树的棵数÷苹果树的棵数 =梨树的棵数是苹果树的几分之几
15÷20 = 34
答:梨树的棵数是苹果树的34 。
例2:学校的果园里有梨树15棵,苹果树20棵。苹果树的棵数是梨树的几倍?(找准标准量。) 苹果树的棵数÷梨树的棵数 =梨树的棵数是苹果树的几倍
20÷15= 113
答:苹果树的棵数是梨树的113 倍。
(2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。
例1:学校的果园里有梨树15棵,苹果树20棵。苹果树的棵数比梨树多几分之几?(相差量是比较量。)苹果树比梨树多的棵数 ÷梨树树的棵数=多几分之几
(20—15)÷15 = 13
答:苹果树的棵数比梨树多13 。
(3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。
例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数比苹果树少几分之几?(相差量是比较量。)梨树比苹果树少的棵数÷苹果树的棵数 =少几分之几
(20—15)÷20= 14
答:梨树的棵数比苹果树少14 。
3、已知一个数的几分之几是多少,求这个数。
(1) 已知一个数的几分之几是多少,求这个数: 是多少(分率对应的比较量)÷几几 (分率)=标准量。
例1:一个儿童体内所含水分有28千克,占体重的45 。这个儿童的体重有多少千克(反映整体与部分之间的关系) 体内水分的重量÷ 45 =体重
28 ÷ 45 = 35(千克)
答:这个儿童体重35千克。
例2:一条裤子的价格是75元,是一件上衣的23 。一件上衣多少元?(反映甲乙两数之间的关系) 裤子的单价÷23 =上衣的单价
75÷23 =11212 (元)
答:一件上衣11212 元。
例3:水果店运一批水果。第一次运了50千克,第二次运了70千克,两次正好运了这批水果的14 。这批水果有多少千克?(两个已知数量的和对应分率。)
(第一次运的重量+第二次运的重量)÷14 = 这批水果的重量
(50+70)÷14 =480(千克)
答: 这批水果480千克。
例4:一辆汽车从甲地开往乙地,第一小时行了全程的14 ,第二小时行了全程的518 ,两小时行了114千米。两地之间的公路长多少千米?(已知数量对应的分率是两个分率的和。)
两小时行的路程÷(14 + 518 )=两地之间的公路长度
114÷(14 + 518 )=216(千米)
答:两地之间的公路长216千米。
例5:一桶水,用去它的34 ,正好是15千克。这桶水重多少千克?(已知数量和分率直接对应。) 用去的重量÷34 =这桶水的总重量
15÷34 =20(千克)
答:这桶水重20千克。
例6:小红家买来一袋大米,吃了58 ,还剩15千克。买来大米多少千克?(已知数量和分率不直接对应。) 剩下的重量÷(1— 58 )= 买来大米的重量
15÷(1— 58 )= 40(千克)
答: 买来大米40千克。
例7:光明小学航模小组是生物小组的45 ,生物小组的人数是美术小组的13 。航模小组有8人,美术小组有多少人?(有两个单位“1”的量且都未知。)
航模小组的人数÷45 ÷13 = 生物小组的人数
8÷45 ÷13 = 30(人)
答:生物小组有30人。
例8:商店运来一些水果,运来苹果20筐,梨的筐数是苹果的34 ,同时又是橘子的35 。运来橘子多少筐?(有两个单位“1”的量,一个已知,一个未知。)
苹果筐数×34 ÷35 = 橘子的筐数
20×34 ÷35 = 25(筐)
答:橘子有25 筐。
(2)已知一个数比另一个数多几分之几多多少,求这个数:多多少(分率对应的比较量)÷几几 (分率)=标准量。
例1:某工程队修筑一条公路。第一周修了这段公路的14 ,第二周修筑了这段公路的27 ,第二周比第一周多修了2千米。这段公路全长多少千米?(需要找相差数量对应的分率。)
第二周比第一周多修的千米数÷( 27 — 14 )=公路的全长
2÷( 27 — 14 )=56(千米)
答:这段公路全长56千米。
(3)已知一个数比另一个数多几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 +几几 )(分率)=标准量。
例1:学校有20个足球,足球比篮球多 14 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数÷(1+ 14 )=篮球的个数
20÷(1+ 14 )=16(个)
答:篮球有16个。
(4)已知一个数比另一个数少几分之几少多少,求这个数:少多少(分率对应的比较量)÷几几 (分率)=标准量。
例1:某工程队修筑一条公路。第一天修了38米,第二天了42米。第一天比第二天少
修的是这条公路全长的128 。这条公路全长多少米?(需要找相差分率对应的数量。)
第一天比第二天少修的米数÷128 =公路的全长
(42 — 38)÷128 =112(米)
答:这段公路全长112米。
(5)已知一个数比另一个数少几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1 –几几 )(分率)=标准量。
例1:学校有20个足球,足球比篮球少 15 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数÷(1—15 )=篮球的个数
20÷(1—15 )=25(个)
答:篮球有25个。
4、较复杂的分数应用题。
例1:学校食堂九月份用煤气640立方分米,十月份计划用煤气是九月份的910 ,而十月份实际用煤气比原计划节约112 。十月份比原计划节约用煤气多少立方分米?(明确题中的三个数量,把那两个数量看做单位“1”,所求数量对应的分率。)
九月份用煤气的体积×910 ×112 =十月份比原计划节约用煤气的体积
640×910 ×112 =144(立方分米)
答:十月份比原计划节约用煤气144立方分米。
例2:鞋厂生产皮鞋,十月份生产的双数与九月份生产的双数的比是5∶4。十月份生产2000双,九月份生产多少双?(比和已知数量不对应,不是按比例分配的应用题,需把比转化成分率。)
解法一:十月份生产的双数是九月份生产的双数的54 。
十月份生产的双数÷54 = 九月份生产的双数
2000÷54 = 1600(双)
解法二:九月份生产的双数是十月份生产的双数的45 。
十月份生产的双数×45 = 九月份生产的双数
2000×45 = 1600(双)
答:九月份生产1600双。
例3:有一袋米,第一周吃了40%,第二周吃了12千克,还剩6千克。这袋大米原有多少千克?(比较量是两个数量的和,且对应的分率没有直接告诉。)
(第二周吃的重量 + 还剩的重量)÷ (1 — 40%)=这袋大米原有的重量
( 12 + 6 )÷ (1 — 40%)= 30 (千克)
答:这袋大米原有30千克。
例4:张师傅加工一批零件,第一天完成的个数与零件总个数的比是1∶3。如果再加工15个,就可以完成这批零件的一半。这批零件共有多少个?(关键是要找出“再加工15个”对应的分率。需要把比转化成分率,找出隐含的分率。)
思考:有“第一天完成的个数与零件总个数的比是1∶3”可得出“第一天完成的个数是零件总个数的13 ”;根据“如果再加工15个,就可以完成这批零件的一半” 可得出“现在完成的个数是零件总个数的12 ”;所以“15个对应的分率是(12 — 13 )”。
再加的零件个数 ÷(12 — 13 )= 这批零件共有的个数
15 ÷(12 — 13 )= 90 (个)
答:这批零件共有90个。
例5:小红看一本故事书。第一天看了45页,第二天看了全书的14 ,第二天看的页数恰好比第一天多20%。这本书一共有多少页?(关键是要找出“第一天看了45页”对应的分率。)
第一天看的页数÷(14 —20%)= 这本书一共的页数
45÷(14 —20%)= 900(页)
答:这本书一共900页。
按比例分配的应用题
例1:居峪小学给六年级买来45本儿童读物,按4:5分别借给三班和四班。这两
个班各借得多少本?(标准的按比例分配的应用题。)
(1)儿童读物分成的总份数:4 + 5 = 9
(2)借给三班的本数:45 ×49 = 20(本)
(3)借给四班的本数:45 ×59 = 25(本)
答:借给三班20本,借给四班25本。
例2:用48厘米的铁丝围成一个长方形,这个长方形的长和宽的比是5:3。这个
长方形的长和宽各是多少?(思考 :题中的分配总量没有直接告诉,怎样求。)
(1)长和宽的和分成的总份数:5+ 3 = 8
(2)长:48÷2×58 = 15(厘米)
(3)宽:48÷2×38 = 9(厘米)
答:长是15厘米,宽是9厘米。
例3:居峪小学的男生人数是女生人数的43 ,全校有学生539人。男女生各有多少
人?(思考 :题中没出现“:”号,怎样按照一定的比进行分配。)
(1)全校学生分成的总份数:4+ 3 = 7
(2)男生人数:539×47 =308(人)
(3)女生人数:539×37 =231(人)
答:男生有308人,女生有231人。

和倍和差倍应用题

例1:饲养小组养的白兔和黑兔共有18只,其中白兔的只数是黑兔的5倍。白兔和黑
兔各有多少只?(和倍。) 白兔的只数+黑兔的只数 = 白兔和黑兔共有的只数
解:设黑兔有Χ只。
5 Χ + Χ = 18
Χ = 3
18 — 3 = 15(只)
答:白兔有15只,黑兔有3 只。
例2:饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的15 。白兔和黑兔
各有多少只?(和倍。) 白兔的只数+黑兔的只数 = 白兔和黑兔共有的只数
解:设白兔有Χ只。
Χ + 15 Χ = 18
Χ = 15
18 — 15 = 3(只)
答:白兔有15只,黑兔有3 只。
例3:一张课桌比一把椅子贵10元,如果椅子的单价是课桌的单价的35 ,课桌和椅子
的单价各是多少元?(差倍。) 课桌的单价 — 椅子的单价 = 课桌比椅子贵的价钱
解:设课桌的单价是Χ元。
Χ — 35 Χ = 10
Χ = 25
25 — 10 = 15(元)
答:课桌的单价是25元 ,椅子的单价是15元。

工程应用题
例1: 一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完
成? 工作总量÷工 效 和=合作时间
1÷(110 + 115 )=6(天)
答:两队合修6天可以完成。
例2:一件工作,甲单独做要用10小时,乙单独做要用15小时。甲做完 13 后,两人合
作,还需要几小时完成? ( 工作总量— 完成工作量)÷工 效 和=合作时间
(1— 13 )÷(110 + 115 )=4(小时)
答:两人合做4小时可以完成。
例3:一件工作,两人合作10天可以完成,甲单独做14天可以完成。两人合作4天,
余下的有乙单独做,还需要几天完成?(完成的工作量和乙的工作效率没有直接告诉。)
( 工作总量— 完成工作量)÷乙的工作效率=还需要的工作时间
(1— 110 ×4)÷(110 — 114 )=21(天)
答:还需要21天可以完成。

百分数应用题
一、百分数应用题的类别
与分数应用题对应,百分数也有三类基本应用题:
1、求一个数的百分之几是多少。
2、求一个数是另一个数的百分之几。
3、已知一个数的百分之几是多少,求这个数。
在实际中应用较多的是求一个数是另一个数的百分之几的应用题,如求产品的合格率、出粉率、出勤率、出米率、发芽率、成活率、及格率、优生率、烘干率、含水率、废品率、利率等。
二、分数应用题的解法
百分数应用题的解法与分数应用题的解法完全相同,只是分率不是一般的分率,而是百分率。
圆分析解答
例1: 1、圆的半径和直径的比是1 ∶2 。
2、圆的周长和直径的比是Л∶1 。
3、两圆直径的比是两圆半径之比。
4、两圆周长的比是两圆半径之比。
5、两圆面积的比是两圆半径平方之比。
例2:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(已知直径求
周长。)
C =Лd
C =Л d
3.14×0.95≈2.98(米)
答:这张圆桌面的周长是2.98米。
例3:饭店的大厅内挂着一只大钟,它的分针长40厘米。这根分针的尖端转动一周所走的路程是多少厘米?(已知半径求周长。)
C = 2Лr
C =Л ×( r × 2)
3.14×( 40 × 2)=251.2(厘米)
答:这根分针的尖端转动一周所走的路程是251.2厘米。
例4:一个圆形水池,周长是37.68米。它的直径和半径各是多少米?(已知周长求直径和半径。)
d = C Л r = C2Л
37.68÷3.14=12(米) 37.68÷(3.14×2)=6(米)
答:它的直径是12米,半径是6米。
例5:一个圆的半径是4厘米。它的面积是多少平方厘米?(已知半径求面积。)
S =Лr²
S = Л × r²
3.14 × 4² = 50.24(平方厘米)
答:它的面积是50.24平方厘米。
例6:一个雷达圆形屏幕的直径是40厘米。它的面积是多少平方米?(已知直径求
面积。)
S =Л( d2 )²
S =Л×( d ÷ 2 )² 40厘米=0.4米
3.14×( 0.4÷ 2 )²= 0.1256(平方米)
答:它的面积是0.1256平方米。
例7:街心花园中圆形花坛的周长是18.84米。花坛的面积是多少平方米?(已知周长求面积。)
S =Л(C2Л )²
S =Л×(C÷Л÷2)²
3.14×(18.84÷3.14 ÷2)²=28.26(平方米)
答:花坛的面积是28.26平方米。
例8:一个环形铁片,它的内圆半径是10厘米,外圆半径是15厘米。它的面积是多少平方厘米?(求环形面积。)
S =Л(R² — r²)
S =Л×(R² — r²)
3.14×(15² — 10² )=392.5(平方厘米)
答:它的面积是392.5平方厘米。
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-06-22
1.已知a、b为正整数,且(a+b)+ab+(a-b)+a/b=240,若a大于b,求ab的最大值。
2.已知a、b、c为正数,并满足 a的平方+b的平方=c的平方,a为质数.(1)判断ab奇偶性. (2)证明 2(a+b+1)是完全平方数. (3)求出2(a+b+1)的最小值.

1.已知a、b为正整数,且(a+b)+ab+(a-b)+a/b=240,若a大于b,求ab的最大值。
(a+b)+ab+(a-b)+a/b=240
a(2+b+1/b)=240
设a=kb,
2kb+kb^2+k=240
k(b+1)^2=240=2*2*2*2*3*5
(b+1)=2, b=1, k=60, a=60, ab=60,
(b+1)=2*2, b=3, k=15, a=45, ab=135,
ab的最大值=135,

2.已知a、b、c为正数,并满足 a的平方+b的平方=c的平方,a为质数.(1)判断ab奇偶性. (2)证明 2(a+b+1)是完全平方数. (3)求出2(a+b+1)的最小值.
(1)a为质数,2又不并满足 a的平方+b的平方=c的平方,所以,a为奇数,ab也是奇数,
(2)
(3)2(a+b+1)的最小值=2(3+4+1)=16.

参考资料:http://iask.sina.com.cn/b/4345240.html

第2个回答  2010-06-28
你去买本练习不久得了- -lx这么多好回答呢,快点采用一个

出两三题六年级下册数学的一些难题!就是找单位“1”什么的,答案也要...
2题:某校六年级数学兴趣小组中,女生人数占3\/8,后来又增加了4个女同学,这时,女生人数正好占全组的4\/9,现在小组共有多少人?特点:表面上看单位一相同,实则不同,如此题,原来女生占全组的3\/8,后来女生占全组的4\/9,看上去单位一是统一的,其实全组人数已经增加了4人了,解这类题要抓住...

我要几道六年级数学附加题,要答案,过程。
王晨说:长方体的前后左右四个面的面积之和是96平方厘米、张成说:它的底周长是24厘米。他们说的数据都是正确的,求这个长方体体积是多少。解答:你这个题目第一句话有一个条件没有打出来,我就把它看作是A,“高在增加将厘米,它恰好是一个正方体”说明现在这个长方体已经是一个上下面是正方形的...

六年级上册数学难度适中的试卷哪款好
《阳光同学》。《阳光同学》2023秋新版全优好卷数学六年级上册试卷北师版,里面内容全面,难度适中,试卷题型从基础到提升,非常适合孩子在家自测。

请帮我找20道六年级小学数学思考题!
20. 一个数既是8的倍数,又是12的倍数,这个数最小是多少?这些题目涵盖了小学数学的主要知识点,包括基础运算、面积计算、因数与倍数等。题目难度适中,旨在培养学生的逻辑思维和问题解决能力。例如,第1题考查了正方形面积的计算公式;第2题则考查了长方形和正方形的面积关系;第3题和第4题则进一步...

六年级数学教辅书有哪些推荐?
1. 《小学数学六年级上册》:这是一本全面覆盖六年级上学期数学知识的教辅书,内容包括整数、分数、小数、几何图形等,题目丰富多样,适合学生进行练习和巩固。2. 《小学数学六年级下册》:与上册类似,这本书也是全面覆盖六年级下学期数学知识的教辅书,内容包括代数、几何、应用题等,题目难度适中,能够...

六年级下册的数学教辅书怎么选?
1.教材版本:首先要确定自己所学的教材版本,例如人教版、北师大版等。然后选择与教材内容相符合的教辅书,以确保教辅书的内容与学校教学内容一致。2.难度适中:六年级是小学阶段的最后一年,学生的数学水平已经有了一定的基础。因此,选择教辅书时要确保其难度适中,既能够帮助学生巩固基础知识,又能够拓展...

如何选择实用的六年级数学教辅书?
单位换算表等,方便学生查阅和记忆。8. 参考评价和口碑:可以参考其他学生和家长的评价和口碑,了解教辅书的实际效果和适用性。综上所述,选择实用的六年级数学教辅书需要综合考虑与教材配套、知识点覆盖全面、题型丰富多样、难度适中、解析详细清晰、练习题量适中、辅助材料齐全以及参考评价和口碑等因素。

随堂练册用什么练习册6年级
《53天天练》是一本非常实用的练习册,它注重基础知识的巩固和提高,适合成绩中等及以上的学生使用。这本书的内容涵盖了六年级数学的各种题型,包括填空题、选择题、计算题、应用题等,可以帮助学生全面提高数学能力。此外,《53天天练》还注重题目的质量和难度,题目数量适中,不会让学生感到过度的压力。...

小学六年级数学哪些试卷比较好?
- **题量**:题量适中,难度适中。- **题目难度**:难度与孟建平和53提优卷相当。- **能力应用**:应用性较强,题目联系实际。- **题型创新**:创新题型设计,有利于学生思维发展。- **答案解析**:电子版答案,视频解析需下载APP。根据孩子的实际情况和学习需求,家长们可以选择最适合的试卷...

六年级数学练习册有哪些推荐?
《全优中考》系列:虽然是面向中考的,但其中的很多练习题也适合六年级学生使用,尤其是在进行升学准备时。选择练习册时,应考虑以下因素:与学校教材的配套性:选择与学校教材相匹配的练习册,可以确保学生在家复习的内容与学校教学进度同步。难度适中:练习册的难度应与学生的学习水平相匹配,既不能过于...

相似回答