数学史上的三次危机?无理数是怎样产生的?尺规作图三大不可能问题?

数学史上的三次危机是什么?无理数是怎样产生的?尺规作图三大不可能问题是什么?要简单一点的回答,最好每个问题不超过100个字。

【尺规作图不能问题简介】 尺规作图不能问题就是不可能用尺规作图完成的作图问题。这其中最著名的是被称为几何三大问题的古典难题:

■三等分角问题:三等分一个任意角;

■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;

■化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。

在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。

【尺规作图不能问题的另类做法】

■总述

人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?

人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.

■关于三等分一任意角问题

★作法一

尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA

★作法二

帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS‖CE,那么∠BOS=1/3∠BOA

★作法三

帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS‖CE,那么∠BOS=1/3∠BOA

★作法四

玫瑰线方法:交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA

■关于立方倍积问题

★作法一

柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边.

★作法二

门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得

y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长.

★作法三

阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长.

■化圆为方问题

★作法:对于已知圆O,作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O等积的正方形.

[编辑本段]

编辑本段]

阿纳克萨戈勒斯是古希腊著名学者,在天文学中,他曾因解释日,月食的成因而闻名遐迩,并且认识到月球自身并不发光.正是他出色的研究成果给他带来了不幸,在他大约50岁的时候,横祸从天而降,蒙受了冤狱之苦.灾难的起因是他认为太阳是一块炽热的石头.由于当时的宗教早已一口咬定太阳是神灵,而这位学者却无视宗教的权威,说太阳是一块石头,因而被投入监狱.

尽管被囚禁的时间并不太长,可是,在被囚禁的日子里冤屈,苦闷,无聊实在让人度日如年.在阴暗,潮湿的牢房里,阿纳克萨戈勒斯看不到外面的朝霞暮霭,每天只有不长时间,阳光能穿过牢房那狭小的方形窗户进入室内.每当阳光进入囚室,在墙壁上撒下一片光亮时,总会引起作为学者的他的种种联想.

有一天,他在凝视圆圆的太阳赏赐给他的方形的光亮时,他那习惯于思索的头脑突发奇想:能不能(仅用直尺和圆规)作一个正方形,使其面积与一个已知圆的面积恰好相等呢 就这样,一道世界名题——"化圆为方"问题诞生了,它与"立方倍积"问题,"三等分任意角"问题一起被后人称作古希腊几何作图三大难题. 阿纳克萨戈勒斯想到化圆为方问题之后非常兴奋,因为他身边没有书籍,没有笔,很难研究别的问题,而这个问题却不同,只要用草棍在地上画就行了,草棍在牢房里有的是.

他在进入高墙之前做梦也没有想到,在他最痛苦的时候,是数学排除了他的几分烦恼.不过,他一生也未能解决他提出的这个问题。
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-06-22
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。第二次数学危机的解决使微积分更完善第三次数学危机,发生在十九世纪末。当时英国数学家罗素把集合分成两种。
教材以古希腊的数学家计算面积等于2的正方形边长活动入手,发现这个边长不能化成分数,进而发现既不是有限小数,又不是无限循环小数。朱同学借助科学计算器,(用无穷逼近法求近似值)计算x2=2中的x,,感受x是一个无限不循环小数,对概念有了进一步的理解。勿容置疑,这样处理较传统教材是一大进步。
立方倍积:做一条线段,使它构成的正方体体积等于已知线段构成正方体体积的2倍。
三等分角:把一个角三等分。
化圆为方:做一条线段,使其构成的正方形面积等于已知线段为半径构成的圆的面积。本回答被提问者采纳
第2个回答  2012-05-29
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。第二次数学危机的解决使微积分更完善第三次数学危机,发生在十九世纪末。当时英国数学家罗素把集合分成两种。
教材以古希腊的数学家计算面积等于2的正方形边长活动入手,发现这个边长不能化成分数,进而发现既不是有限小数,又不是无限循环小数。朱同学借助科学计算器,(用无穷逼近法求近似值)计算x2=2中的x,,感受x是一个无限不循环小数,对概念有了进一步的理解。勿容置疑,这样处理较传统教材是一大进步。
立方倍积:做一条线段,使它构成的正方体体积等于已知线段构成正方体体积的2倍。
三等分角:把一个角三等分。
化圆为方:做一条线段,使其构成的正方形面积等于已知线段为半径构成的圆的面积。
第3个回答  2010-06-23
呵呵,有一个交大附中的。我也是

数学史上的三次危机?无理数是怎样产生的?尺规作图三大不可能问题?
在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。【尺规作图不能问题的另类做法】■总述 人们用尺规解几何三大作图题屡遭失败之后,一方面...

数学史上的三次危机?无理数是怎样产生的?尺规作图三大不可能问题?
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。第二次数学危机的解决使微积分更完善第三次数学危机,发生在十九世纪末。当时英国数学家罗素把集合分成两种。教材以古希腊的数学家计算面积等于2的正方形边长活动入手,发现这个边长不能化成分数,进而发现既不是有...

...都是什么(简单概括)?无理数是怎样产生的?尺规作图3大不能问题...
悖论的产生---第三次数学危机 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地...

平面几何三大难题是尺规作图能的问题,为什么?
平面几何三大难题指的是古希腊时期无法用直尺和圆规完成的三个问题,分别是三等分任意角、倍立方和圆化方。这三个问题的解决都需要使用到其他工具或方法。三等分任意角是指通过使用直尺和圆规,将任意一个角分成三个等份。古希腊时期的数学家们曾经试图通过直尺和圆规来解决这个问题,但是最终失败了。倍立...

辩论赛资料-成功的标尺是过程
当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。 笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。

中国数学文化史的论文 要标准格式的
学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他...

三大尺规作图难题为什么都不可能?
第一,三等分角、n等分角都是线性代数问题,而倍立方是三等分角在cos^3θ等于1\/2的条件下的尺规作图。这与立体图形无关。在数学领域,立体图形的标志是一个方程含有三个未知数;这样的代数方程不可以尺规作图。另外,尺规作图只是与线性代数方程和直线方程的系数和常数项,与圆方程的圆心坐标和半径...

什么是难题
圆周率π=3.1415926...是无理数,尺规作图是不可能作出无理数来,所以用尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。三等分任意角:三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。但无疑地它的出现是很自然的,纪元前五、六百年间希腊的数学家们就...

数学史是这么样的?
其次,学习数学史可以引导学生学习数学家的优秀品质.任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点.数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力.阿基米德在敌人破城而入危及生命的关头仍沉浸在...

所有的无理数都可以通过尺规作图在数轴上表示出来吗?
应该是一笔不小的开销。谈这些,主要是说明无理数中除了有理数的二次方根可以尺规作图之外,三次方根、四次方根,...,n次方根都可以尺规作图,当然还包括一些可作图的无理数的n次方根。但是,超越数暂时还是不可以作图,至于将来有一天是否能够作图,还要看数学的发展状况,关键的问题在于超越数的代...

相似回答