不定积分求导过程,谢谢

如题所述

第1个回答  2015-04-19

本回答被网友采纳
第2个回答  推荐于2017-06-16
=dcos(x)/(1+cosx^2)
积分=arctan(cosx)+C
带入区间0和pi,答案为=arctan(-1)-arctan(1)=-arctan(1)本回答被网友采纳
第3个回答  2015-04-19
1/(1+x²) dx=arctanx
第4个回答  2015-04-19
这个是定积分呀

不定积分求导怎么求?
=2∫(t-1+1)dt\/(1-t)=-2t-2ln绝对值(1-t)+C 代回 =-2√x-ln绝对值(1-√x)+C

不定积分求导过程,谢谢
回答:=dcos(x)\/(1+cosx^2) 积分=arctan(cosx)+C 带入区间0和pi,答案为=arctan(-1)-arctan(1)=-arctan(1)

不定积分求导过程是什么?
求导过程如下:定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。“求定积分...

高数不定积分求导.
不定积分求导,答案为(arctanx)^2

不定积分求导。求详解。
用分部积分法就好了。∫ x\/sin²t dt = ∫ x d(- cotx)= - xcotx + ∫ cotx dx = - xcotx + ∫ 1\/sinx d(sinx)= - xcotx + ln| sinx | + C

不定积分求导的运算步骤?
原式=∫e^(-x^2)dx =∫∫e^(-x^2-y^2) dxdy =∫∫e^(-r^2) rdrdα =(∫e^(-r^2) rdr)*(∫dα)=π*∫e^(-r^2) dr^2 =π*(1-e^(-r^2) |r->+∝ =π 解释 根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分...

怎样利用不定积分求导数?
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。不定积分只是导数的逆运算,所以也叫做反导数。而定...

不定积分求导公式
不定积分求导公式:dx=ln|x|+c。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的...

不定积分求导怎么求
d\/dx{∫(1->x) x.sint dt } =d\/dx{x.∫(1->x) sint dt } =xsinx +∫(1->x) sint dt

不定积分的导数怎么求?
tanx-x 解题过程如下图:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

相似回答