如题所述
为什么可逆可看成n个初等方阵的乘积阿
这是书上的基本定义有证明的大概是这样A可以由单位阵经过有限次初等变换来得到,行变换相当于左边乘以初等矩阵,列变换相当于右乘一个初等矩阵,这样一个可逆矩阵就可以由一系列初等矩阵乘积来表示。初等矩阵是可逆的,初等阵的逆阵也是初等阵,Pt...P2P1A = E 变形为A表示为若干(t个)初等矩阵的乘积!再分析即得到定理:如果A是n阶方阵,它是可逆方阵的充要条件是A必可以表示为一些初等矩阵的乘积!