1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…+1/(1+2+3+4+…+19)
...1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+1\/(1+2+3+4+5)...1\/(1+2+3+4+...
所以 1\/(1+2)=2\/(2*3)=2\/2-2\/3 1\/(1+2+3)=2\/(3*4)=2\/3-2\/4 1\/(1+2+3+4)=2\/(4*5)=2\/4-2\/5 1\/(1+2+3+4+5)=2\/(5*6)=2\/5-2\/6 ...1\/(1+2+3+4+...99)=2\/(99*100)=2\/99-2\/100 所以 结果为2\/2-2\/100=49\/50 ...
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+1999) 简便
1+2+3+……+1999=1999*2000\/2 1\/(1+2+3+……+1999)=2*(1\/1999-1\/2000)解:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+1999)=2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(1999*2000)=2[1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/1998-1\/1999+1\/...
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+..+99) 答案和解题的大致过...
写出通项:a1=1 a2=1\/(1+2)...an = 1\/(1+2+...n)=1\/[n(n+1)\/2]=2\/[n(n+1)=2[1\/n-1\/(n+1)]所以a(n-1)=2[1\/(n-1) -1\/n] ;每一项与前一项都有一部分可以约去. 则原式=1+2[1\/2-1\/3]+...+2[1\/(n-1)-1\/n]+2[1\/n-1\/(n+1)]=1+2*1\/2 -...
1\/(1+2) +1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算...
整个运算的每两个加号之间的为一个项,则总共有2008个项,其普通式为An,接下来我们先计算An的普通式,因为括弧里为分母,分母的普通式为n(n+1)\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有20...
1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+19=?
1\/(1+2)=2(1\/2 -1\/3)1\/(1+2+3)=2(1\/3 -1\/4)如此类推 那么结果就是2(1\/2 - 1\/20)=1-1\/10=9\/10 为什么是1\/(1+2)=2(1\/2 -1\/3)这样呢 因为假设1\/(1+2+...n)那么分母1+2+...n=n(1+n)\/2 那么1\/(1+2+...n)=2\/n(n+1)=2(1\/n -1\/(n+1)把n=2...
(1\/1+2)+(1\/1+2+3)+(1\/1+2+3+4)+...+(1\/1+2+3+...+99)=?
1\/(1+2)=2*(1\/2-1\/3)1\/(1+2+3)=2*(1\/3-1\/4)1\/(1+2+3+4)=2*(1\/4-1\/5)………1\/(1+2+……+k)=2*【1\/k-1\/(1+k)】………1\/(1+2+3+...+99)=2*(1\/99-1\/100)连加得1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+99)=...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
注意观察,第 N 个加式可以表述成:1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) ...
1\/1+2+1\/1+2+3+1\/1+2+3+4...+1\/1+2+3+...+2001
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+98)+1\/(1+2+3+…+2001)=1\/[(1+2)*2\/2]+1\/[(1+3)*3\/2]+1\/[(1+4)*4\/2]+……+1\/[(1+2001)*2001\/2]=2\/(2*3)+2\/(3*4)+2\/4*5+……+2\/(2001*2002)=[1\/2*3+1\/3*4+1\/4*5+...+...
初一数学题1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100...
因为:1\/(1+2)=1\/3=2*(1\/2-1\/3)1\/(1+2+3)=1\/6=2*(1\/3-1\/4)1\/(1+2+3+4)=1\/10=2*(1\/4-1\/5)...同理 1\/(1+2+3+...+100)=1\/5050=2*(1\/100-1\/101)所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2*【(1\/2-1...
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...100)=
解:注意常用的关系式:1\/{n(n+1)\/2}=2{1\/n-1\/(n+1)} 可以得到:1\/3=1\/2-1\/6,1\/(1+2+3)=1\/6,1\/(1+2+3+4)=1\/6-1\/15,...所以 原式= 1+1\/2-1\/6+1\/6+1\/6-1\/15+1\/15_+1\/12-...=1+1\/2+1\/6+1\/12+1\/20+...+1\/ 2450+1\/(1+2+3+...+10...