(1\/1+2)+(1\/1+2+3)+(1\/1+2+3+4)+...+(1\/1+2+3+...+99)=?
1\/(1+2)=2*(1\/2-1\/3)1\/(1+2+3)=2*(1\/3-1\/4)1\/(1+2+3+4)=2*(1\/4-1\/5)………1\/(1+2+……+k)=2*【1\/k-1\/(1+k)】………1\/(1+2+3+...+99)=2*(1\/99-1\/100)连加得1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+99)...
1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 等于多少 请写出详细的过程与算...
所以 1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 =2\/(1*2)+2\/(2*3)+...+2\/(99*100)=2(1-1\/2+1\/2-1\/3+...+1\/99-1\/100)=2*99\/100 =99\/50
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5...
数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+1999) 简便_百度知...
解题思路:1+2=2*3\/2 1\/(1+2)=2\/(2*3)=2*(1\/2-1\/3)1+2+3=3*4\/2 1\/(1+2+3)=2\/(3*4)=2*(1\/3-1\/4)………1+2+3+……+1999=1999*2000\/2 1\/(1+2+3+……+1999)=2*(1\/1999-1\/2000)解:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+....
1\/(1+2) +1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算...
\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有2008项的数列的和,将2提外,括弧里的式子可以有规律的进行删减,只留下(1\/2 - 1\/2010),于是式子最后即为计算2(1\/2 - 1\/2010)的值。
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3...+99)
1+1\/(1+2)+1\/(1+2++3)+……+1\/(1+2+3+……+99)=2*【1\/2+1\/2*(1+2)+1\/2*(1+2++3)+……+1\/2*(1+2+3+……+99)】=2*【1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/99-1\/100】=2*【1-1\/100】=2-1\/50 =99\/50 =1.98 ...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……1\/1+2+3+...+100等于多少
答:题目应该缺少了大量的括号吧?1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)第n项的分母是自然数之和(n+1)*n\/2 所以:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+...+2\/(...
...+1\/1+2,+1\/1+2+3,+1\/1+2+3+4...1+1\/1+2+3+4+5...+100
+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;1\/(4*5)=1\/4-1\/5;……1\/(100*101)=1\/2006-1\/101 所以,原式=2(1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/100-1\/101)=2(1-1\/101)=2*100\/101 =200\/101 ...
1+(1\/1+2)+(1\/1+2+3)...+(1\/1+2+3+...+2013)=
答:第n项分数的分母=(1+2+3+...+n)=(n+1)n\/2 第n项分数=2\/[n(n+1)]=2\/n-2\/(n+1)原式 =2*[1-1\/2+1\/2-1\/3+...+1\/2013-1\/2014]=2*(1-1\/2014)=2013\/1007