:lim(xsin1/x+1/xsinx)x趋于0

如题所述

第1个回答  2022-09-01
答案是1.
lim(x→0) [xsin(1/x)+(1/x)sinx]
=lim(x→0) xsin(1/x)+lim(x→0) sinx/x,前面一项是(0×有界函数),等于0
=0+1
=1

:lim(xsin1\/x+1\/xsinx)x趋于0
答案是1.lim(x→0) [xsin(1\/x)+(1\/x)sinx]=lim(x→0) xsin(1\/x)+lim(x→0) sinx\/x,前面一项是(0×有界函数),等于0 =0+1 =1

limx趋向0(xsin1\/x+1\/xsinx) 的极限
limx趋向0(xsin1\/x+1\/xsinx) =limx趋向0(xsin1\/x)+ limx趋向0(1\/xsinx) =0+1=1

limx趋近于0时(xsin1\/x+1\/xsinx)的极限值
1

lim(x趋向于0)(xsin(1\/x)+(1\/x)sinx)=
1

limx趋近于0时,xsin(1\/x)+(1\/x)sinx的极限怎么求
lim(x→0)x·sin(1\/x)=0【x是无穷小,sin(1\/x)是有界函数】然后,有界函数×无穷小=无穷小lim(x→0)1\/x·sinx=1(重要极限)∴lim(x→0)[x·sin(1\/x)+1\/x·sinx]=1

求极限、limx→0(xsin1\/x+(1\/x )sinx)
limx→0(xsin1\/x+(1\/x )sinx)=limx->0xsin1\/x + limx->0sinx\/x (注意sin函数值有限,范围只能是[-1.1])=0 + limx->0sinx\/x (sinx和x是等价无穷小)=1

求极限、limx→0(xsin1\/x+(1\/x )sinx) 求解题过程 答案是1
xsin1\/x是0乘有界量=0 sinx\/x是重要极限=1,x~0时,x与sinx是等价的

关于高数(一)中极限的问题:当x趋于0时,(xsin1\/x+1\/xsinx)极限是...
xsin1\/x的极限是0(|sin1\/x|<=1,|xsin1\/x|<|x|->0)后面的(sinx)\/x的极限是1

关于高数(一)中极限的问题:当x趋于0时,(xsin1\/x+1\/xsinx)极限是...
是1,没错。前式是趋于0,后式趋于1。

lim(x→∞) (xsin(1\/x)+1\/x(sinx))
lim(x→∞) (xsin(1\/x)+1\/x(sinx))设1\/x=t 原式 =lim(t->0)(sint\/t+t*sin(1\/t))=1+0 =1

相似回答
大家正在搜