换元积分法是求不定积分的技巧,分为两类:第一类与第二类。第一类换元法又称凑微分法,适用于通过凑微分后,利用特定积分公式求解。第二类换元法则要求变换式可逆,且在相应区间内,Φ(x)为单调函数。
第二类换元法常用于处理根式类被积函数,尤其在面对高次二项式时,此法可避免复杂展开,简化求解过程。两种主要换元手段包括:根式代换法与三角代换法。
以下展示两种换元法的例题。
第一类换元积分法示例:
原式=∫(x-1+1)/根号下(x-1)dx
=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C
其中C为任意常数。
第二类换元积分法示例:
令t=根号下(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C
其中C为任意常数。
怎样用换元积分法求不定积分
所以到此你就化简成了:x\/√(1-x^2)dx=-0.5*(1-x^2)^(-1\/2)*d(1-x^2),到这一步就很明显了,直接用换元法得出答案:-0.5*(1-x^2)^1\/2,然后再根据题目要求写出答案即可(这里是指:如果求的是不定积分,那么要加上常数C)。
如何利用换元法求不定积分?
1、第二类换元积分法 令t=根号下(x-1),则x=t^2+1,dx=2tdt 原式=∫(t^2+1)\/t*2tdt =2∫(t^2+1)dt =(2\/3)*t^3+2t+C =(2\/3)*(x-1)^(3\/2)+2根号下(x-1)+C,其中C是任意常数 2、第一类换元积分法 原式=∫(x-1+1)\/根号下(x-1)dx =∫[根号下(x-1)+1\/...
用换元法计算不定积分,大一微积分上的
(4)分子提个x出来,然后xdx=0.5dx^2,剩下的分子就是(1+x^2),分母就是1+(x^2)^2,换元后在分项积分就好。(6)注意到1+Inx=d[(x)+(xInx-x)]=d(xInx),然后分母就是这个微元的平方,直接换元就好
如何用换元法求不定积分的值。
设x=asint,则dx=dasint=acostdt,可以得到:a^2-x^2 =a^2-a^2sint^2 =a^2cost^2 ∫√(a^2-x^2)dx =∫acost*acostdt =a^2∫cost^2dt =a^2∫(cos2t+1)\/2dt =a^2\/4∫(cos2t+1)d2t =a^2\/4*(sin2t+2t)将x=asint代回,得:∫√(a^2-x^2)dx=x√(a^2-...
用换元法求不定积分
x=sect dx=secttantdt 原式=∫secttant\/(sect*tant)*dt =∫dt =t+c x=1\/cost cost=1\/x t=arctan1\/x 即原式=arctan1\/x+c
怎么用换元法求不定积分?
运用换元法+分部法:u = √x,dx = 2u du ∴∫ e^√x dx = 2∫ ue^u du = 2∫ u d(e^u)= 2ue^u - 2∫ e^u du = 2ue^u - 2e^u + C = 2(u - 1)e^u + C = 2(√x - 1)e^√x + C 不定积分的意义:如果f(x)在区间I上有原函数,即有一个函数F(x)使...
怎样利用换元法求不定积分?
求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘...
换元法求不定积分
换元积分法是求不定积分的技巧,分为两类:第一类与第二类。第一类换元法又称凑微分法,适用于通过凑微分后,利用特定积分公式求解。第二类换元法则要求变换式可逆,且在相应区间内,Φ(x)为单调函数。第二类换元法常用于处理根式类被积函数,尤其在面对高次二项式时,此法可避免复杂展开,简化求解...
如何用换元法求不定积分的值?
积分过程为 令x = sinθ,则dx = cosθ dθ ∫√(1-x²)dx =∫√(1-sin²θ)(cosθ dθ)=∫cos²θdθ =∫(1+cos2θ)\/2dθ =θ\/2+(sin2θ)\/4+C =(arcsinx)\/2+(sinθcosθ)\/2 + C =(arcsinx)\/2+(x√(1 - x²))\/2+C =(1\/2)[arcsinx...
用换元法求不定积分
简单分析一下,答案如图所示