怎样利用换元法求不定积分?

如题所述

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

温馨提示:内容为网友见解,仅供参考
无其他回答

怎样利用换元法求不定积分?
求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘...

如何利用换元法求不定积分?
1、第二类换元积分法 令t=根号下(x-1),则x=t^2+1,dx=2tdt 原式=∫(t^2+1)\/t*2tdt =2∫(t^2+1)dt =(2\/3)*t^3+2t+C =(2\/3)*(x-1)^(3\/2)+2根号下(x-1)+C,其中C是任意常数 2、第一类换元积分法 原式=∫(x-1+1)\/根号下(x-1)dx =∫[根号下(x-1)+1\/...

如何用换元积分法求不定积分的值?
不定积分的换元积分法方法如下:一、第一类换元法 (即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。二、第二类换元法 1、第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换...

换元法求不定积分
换元积分法是求不定积分的技巧,分为两类:第一类与第二类。第一类换元法又称凑微分法,适用于通过凑微分后,利用特定积分公式求解。第二类换元法则要求变换式可逆,且在相应区间内,Φ(x)为单调函数。第二类换元法常用于处理根式类被积函数,尤其在面对高次二项式时,此法可避免复杂展开,简化求解...

怎么用换元法求不定积分?
运用换元法+分部法:u = √x,dx = 2u du ∴∫ e^√x dx = 2∫ ue^u du = 2∫ u d(e^u)= 2ue^u - 2∫ e^u du = 2ue^u - 2e^u + C = 2(u - 1)e^u + C = 2(√x - 1)e^√x + C 不定积分的意义:如果f(x)在区间I上有原函数,即有一个函数F(x)使...

如何用换元法计算不定积分
不定积分的公式:1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫ 1\/x dx = ln|x| + C 4、∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1 5、∫ e^x dx = e^x + C 6、∫ ...

用换元法求不定积分
简单分析一下,答案如图所示

如何用换元法和第一类换元法计算不定积分?
1、积分公式法:直接利用积分公式求出不定积分。2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式,进而求得原不定积分。积分常用法则公式:1、∫0dx=c 不定积分的定义。2、∫x^udx=(x^(u+1))\/(u+1)+c。3、∫1\/xdx=ln|x|+c。4、∫a^xdx=(a^x)\/lna+c。5、...

用换元法求不定积分
x=sect dx=secttantdt 原式=∫secttant\/(sect*tant)*dt =∫dt =t+c x=1\/cost cost=1\/x t=arctan1\/x 即原式=arctan1\/x+c

如何用换元法求不定积分?
思路是:提出(x-1)(x+1)之后,对其余部分的替换。分析过程如下:∫dx[³√(x+1)²(x-1)^4)]=∫dx[³√(x+1)²(x-1)(x-1)³]∫dx[³√(x+1)²(x-1)(x-1)³]=∫dx[(x-1) ³√(x+1)²(x-1)]=∫dx[(x-1)...

相似回答
大家正在搜