椭圆的参数方程怎么求?

如题所述

利用cos²θ+sin²θ=1,根据椭圆参数方程有:x/a=cosθ y/b=sinθ 代入上式很容易就变成了一般方程(x/a)²+(y/b)²=1。

另外,几个公式非常重要:ρ=x²+y²,ρcosθ=x,ρsinθ=y。

以下是几个常见的参数方程:

过(h, k),斜率为m的直线:

圆:

椭圆:

双曲线:

抛物线:

螺线:

摆线:

注:上文中的a, b, c, h, k, l, m, p, r为已知数,t都为参数, x, y为变量。

拓展资料:

应用

在柯西中值定理的证明中,也运用到了参数方程。

柯西中值定理

如果函数f(x)及F(x)满足:

⑴在闭区间[a,b]上连续;

⑵在开区间(a,b)内可导;

⑶对任一x∈(a,b),F'(x)≠0。

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:

r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

参考资料:参数方程-百度百科

温馨提示:内容为网友见解,仅供参考
无其他回答

椭圆的参数方程是什么
椭圆的参数方程x=acosθ,y=bsinθ。一个焦点在极坐标系原点,另一个在θ=0的正方向上。r=a(1-e^2)\/(1-ecosθ)。e为椭圆的离心率=c\/a。求解椭圆上点到定点或到定直线距离的较值时,用参数坐标可将问题转化为三角函数问题求解。x=a×cosβ,y=b×sinβ,a为长轴长的一半。相关质:由...

椭圆的参数方程是什么?
参数方程:x= f(t)y=g(t),t为参数。如椭圆的参数方程:x=acost (1)y=bsint (2)由(1)、(2)分别得 x\/a=cost (3)y\/b=sint (4)从而有 x²\/a²=cos²t (5)y²\/b²=sin²t (6)(5)+(6)得椭圆的标准方...

椭圆的参数方程是什么?
参数方程:x = a*cost y = b*sint 注意,t 不是 α y\/x = tg(α) = b\/a * tg(t)所求为:r^2 = x^2 + y^2 = a^2 * (cost)^2 + b^2 * (sint)^2 = (cost)^2 * [a^2 + b^2 * (tgt)^2] = (cost)^2 * [a^2 + a^2 * tg(α)^2] = (cost)^2...

椭圆的参数方程
椭圆的参数方程:x=acosθ,y=bsinθ。椭圆参数方程是以焦点(c,0)为圆心,R为变半径的曲线方程。定义设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的...

椭圆的参数方程(焦点在Y轴上)的推导
参数方程的原理(X轴的):设A为椭圆上一点:坐标(X,Y)。O=(-c,0)。O为椭圆焦点K是以OX为始边OA为终边的角,取K为参数,X=|OA|COS(K),Y=|OB|SIN(K),设参数方程为X=aCOS(K)Y=bSIN(K)。==>X^2\/a^2+Y^2\/b^2=(COSK)^2+(SINK)^2=1为椭圆标准方程。==>参数方程X=...

椭圆的参数方程是什么?
参数方程:x=acosθ , y=bsinθ。这里角度θ表示原点与椭圆上一点连线与x正半轴的夹角,或称为仰角。一根杆的一点,直立于y轴,设B顶点,A底点。当A从原点沿x轴右移,BA与x轴夹角t称溜角,就是参数。杆上取动点。x=b*cost,y=a*sint 动一周是椭圆。如果强说的话设椭圆上一点M(acosθ...

椭圆的参数方程是怎么证明出来的??
椭圆的参数方程推导过程:(1)的平方加(2)的平方 化简得:证明:将任意一点P的坐标(Rsinθ-c,Rcosθ)代入方程 = 说明P点是椭圆标准方程上的一点。

椭圆的参数方程公式
椭圆的参数方程x=acosθ,y=bsinθ。a代表半长轴的长度,b代表半短轴的长度,r表示半径的长度。理解参数方程公式:1、分别以半短轴和半长轴为半径做椭圆的内接圆和外接圆。2、椭圆上的任意一点A与内接圆上的A1点有相同的纵坐标,与外接圆上的A2点有相同的横坐标。3、φ角是椭圆内接圆或外接圆的...

椭圆参数方程
椭圆的参数方程为:x = a×cosθ,y = b×sinθ。其中,a 和 b 是椭圆的长半轴和短半轴的长度,θ 是参数,表示椭圆上的点与椭圆中心的连线与x轴的夹角。这些方程描述了在平面坐标系中椭圆上任意一点的坐标。通过改变θ的值,可以追踪椭圆上的每一个点。这是一种通过数学公式精确描述椭圆形状...

椭圆的参数方程怎么求?
=b²,得a²x²+b²y²=a²b²再用a²b²除两边,即得焦点在y轴上的椭圆的标准方程为:y²\/a²+x²\/b²=1,其中a²-b²=c²;a>b.其中a为长半轴之长,b为短半轴之长,c为半焦距。

相似回答
大家正在搜