证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
证明:A^2=A
则A^2-A=0
凑因式分解!
A^2-A-2E=-2E
分解得:
(A-2E)(A+E)=-2E
即:-1/2*(A-2E)(A+E)=E
由逆矩阵性质:当AB=E,时,则称A可逆,且A^(-1)=B
则
(A+E)可逆,且逆矩阵为:-1/2*(A-2E)
对于这种证明题,先把这个式子凑出来。然后分解因式就可求出其逆矩阵!
温馨提示:内容为网友见解,仅供参考