已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*). (Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式; (Ⅱ)若bn=n(an+1)2,求数列{bn}的前n项和Sn.

解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2×2n-1=2n,
∴an=2n-1.
(II)解:由(I)可知:bn=
n•2n
2
=n•2n-1.
∴Sn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1,
2Sn=1×2+2×22+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=
2n-1
2-1
-n•2n=2n-1-n•2n=(1-n)•2n-1.
∴Sn=(n-1)•2n+1.
温馨提示:内容为网友见解,仅供参考
无其他回答

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{..._百度知 ...
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2×2n-1=2n,∴an=2n-1.(II)解:由(I)可知:bn= n•2n 2 =n•2n-1.∴Sn=1×20+2×21+3×22+…+(n-1)•...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{a...
解答:解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.即an=2n-1(n∈N*).(II)证明:∵ ak ak+1 = 2k-1 2k+1-1 = 2k-1 2(2k- 1 2 )< 1 2 ,k=1,2,,n,∴ a1 a2 + a2 a3 ++ an an+1 ...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(1)求证:数列{an+1}是等比...
证明:(1)an+1=2an+1,∴an+1+1=2(an+1),又a1=1,∴a1+1≠0,an+1≠0,an+1+1an+1=2,∴数列{an+1}是首项为2,公比为2的等比数列.即an+1=2n,因此an=2n-1.  …(6分)(2)∵4bn?n2=(an+1)n,∴4bn?n2=2n2,∴2bn-n=n2,即bn=12(n2+n).…(9...

已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}...
(3分)又a1+1=2≠0. …(4分)所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)故bn=(2n?1)2n∴Tn=b1+b2+b3+…+bn=1?2+3?22+5?23+…+(2n-1)2n2Tn=1?22+3?23+5?24+…+(2n-1)2n...

已知数列{an}满足a1=1,an+1=n+2nan+1(n∈N*).(1)证明数列{ann}是等差数...
an?1n?1,∴数列{ann}是等差数列;(2)解:∵a1=1,an+1=n+2nan+1,∴a2=3a1+1=4∴a22?a11=1∴数列{ann}是以1为首项,1为公差的等差数列∴ann=n,∴an=n2;(3)证明:n≥2时,bn=2nan=2nn2=4n

已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N﹡.(Ⅰ)求证:数列{an+1}...
(Ⅰ)证明:由题意得an+1+1=2an+2=2(an+1),又a1+1=2≠0.所以数列{an+1}是以2为首项,2为公比的等比数列.(Ⅱ)解:由(1)知an=2n-1,故cn=2nanan+1=2n(2n?1)(2n+1?1)=12n?1?12n+1?1,∴Tn=c1+c2+c3+…+cn=(1?13)+(13?17)+…+(12n?1?12n+1?1)=...

已知数列{an}满足:a1=1,anan+1=2n(n∈N*).(1)证明:对任意正整数n,an+2...
(1)由?n∈N*,anan+1=2n,an+1an+2=2n+1,知?n∈N*,an+2an=2.…(3分)故数列{a2k-1},{a2k}都是公比为2的等比数列,…(4分)∵a1=1,a1a2=2,∴a2=2.…(5分)知:?k∈N*,a2k-1=a1×2k-1=2k-1,a2k=a2×2k-1=2k.…(6分)所以数列{an}的通项公式为...

数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N*).(Ⅰ)证明:数列{2nan}是等 ...
(Ⅰ)由已知可知an+12n+1=anan+2n,即2n+1an+1=2nan+1,即2n+1an+1?2nan=1∴数列{2nan}是公差为1的等差数列.(Ⅱ)由(Ⅰ)知2nan=2a1+(n?1)×1=2+(n?1)×1=n+1,∴an=2nn+1.(Ⅲ)由(Ⅱ)知bn=1n?2n+1an=1n?2n+1×2nn+1∴bn=12n(n+1)=12(1n?...

已知数列{an}满足:a1=1,an+1=anan+1(n∈N*)(1)证明:数列{1an}为等差...
(1)证明:∵an+1=anan+1∴1an+1-1an=1∵a1=1,∴数列{1an}是以1为首项,1为公差的等差数列,∴1an=n,∴an=1n;(2)解:2nan=n?2n∴Sn=1?2+2?22+…+n?2n①∴2Sn=1?22+2?23+…+(n-1)?2n+n?2n+1②①-②可得-Sn=2+22+23+…+2n-n?2n+1=2(1?2n)1?2-n?

已知数列{an}满足a1=1,an+1=2an+1(n∈N﹡).求数列
已知数列 {an} 满足 a1=1 且 an+1=2an + 1(n∈N*)。通过观察递推关系,我们可以得出以下 将 an+1 两边加上1,得到 an+1 + 1 = 2an + 2。进一步简化,可以发现 (an+1 + 1) \/ (an + 1) 等于定值2。初始项 a1 + 1 为 1 + 1 = 2,因此数列 {an + 1} 是以2为首项...

相似回答