已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(1)求证:数列{an+1}为等比数列,并求出数列{an}的通项公式;(2)若数列{bn}满足bn=nan,求数列{bn}的前n项和Sn.
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(1)求证:数列{an+1}是...
证明:(1)an+1=2an+1,∴an+1+1=2(an+1),又a1=1,∴a1+1≠0,an+1≠0,an+1+1an+1=2,∴数列{an+1}是首项为2,公比为2的等比数列.即an+1=2n,因此an=2n-1. …(6分)(2)∵4bn?n2=(an+1)n,∴4bn?n2=2n2,∴2bn-n=n2,即bn=12(n2+n).…(9...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{..._百度知 ...
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2×2n-1=2n,∴an=2n-1.(II)解:由(I)可知:bn= n•2n 2 =n•2n-1.∴Sn=1×20+2×21+3×22+…+(n-1)•...
...an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}为等比数列;(Ⅱ)若bn=(2n...
(3分)又a1+1=2≠0. …(4分)所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)故bn=(2n?1)2n∴Tn=b1+b2+b3+…+bn=1?2+3?22+5?23+…+(2n-1)2n2Tn=1?22+3?23+5?24+…+(2n-1)2n...
已知数列{an}满足a1=1,an+1=2an+1(n属于N*) 求证数列{an+}是等比数列...
用待定系数法,an+1+K=2(an+K) 然后展开来,把有K的移到右边 得an+1=2an+K 由原式可知 K=1 所以将K=1代入得an+1 +1=2(an +1) 令bn=an +1 ,所以bn+1=2bn ,所以bn+1\/bn=2 所以为等比数列,b1=a1+1=2 bn=2^n,又因为bn=an+1,所以an=bn-1=2^n -1 ...
...n∈N﹡.(Ⅰ)求证:数列{an+1}为等比数列;(Ⅱ)令cn=2nan?
(Ⅰ)证明:由题意得an+1+1=2an+2=2(an+1),又a1+1=2≠0.所以数列{an+1}是以2为首项,2为公比的等比数列.(Ⅱ)解:由(1)知an=2n-1,故cn=2nanan+1=2n(2n?1)(2n+1?1)=12n?1?12n+1?1,∴Tn=c1+c2+c3+…+cn=(1?13)+(13?17)+…+(12n?1?12n+1?1)=...
已知数列{an}满足a1=1,a(n+1)=2an+1(1)求证:数列{an+1}是等比数列。(2...
(1)因为(a(n+1)+1)\/an+1=2所以{an+1}是以q=2,首项为2的等比数列。(2)由(1)可得等比数列的前n项和为2(2^n-1),再减去n个1,得2(2^n-1)-n即为{an}的前n项和。(2^n表示2的n次幂)
已知数列{an}满足:a1=1,an+1=anan+1(n∈N*)(1)证明:数列{1an}为等差...
(1)证明:∵an+1=anan+1∴1an+1-1an=1∵a1=1,∴数列{1an}是以1为首项,1为公差的等差数列,∴1an=n,∴an=1n;(2)解:2nan=n?2n∴Sn=1?2+2?22+…+n?2n①∴2Sn=1?22+2?23+…+(n-1)?2n+n?2n+1②①-②可得-Sn=2+22+23+…+2n-n?2n+1=2(1?2n)1?2-n?
...a(n+1)=2an+1(1)证明数列{an+1}为等比数列,并求出an
证明:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2^n.即an=2^n -1 (n∈N*)(2))
已知数列{an}满足a1=1,an+1=n+2nan+1(n∈N*).(1)证明数列{ann}是等差数...
an?1n?1,∴数列{ann}是等差数列;(2)解:∵a1=1,an+1=n+2nan+1,∴a2=3a1+1=4∴a22?a11=1∴数列{ann}是以1为首项,1为公差的等差数列∴ann=n,∴an=n2;(3)证明:n≥2时,bn=2nan=2nn2=4n
已知数列{An}满足A1=1,A(n+1)=2An+1,求证:数列{An+1}是等比数列 求An的...
A(n+1)=2An+1,则A(n+1)=2An+1+1=2An+2=2(An+1),A1+1=2。则数列{An+1}是首项和公比都为2的 等比数列 ,An=2*2^(n-1)=2^n,其中n为 正整数 。