已知已知数列{an}满足a1=1,an+1=2an+1(n∈N*)证明:1/a1+1/a2+1/a3+...+1/an+1<2/3

如题所述

a(n+1)=2an+1
a(n+1)+1=2an+2=2(an+1)

{an+1}为等比数列 公比q=2 首项a1+1=2
an+1=2^n
an=2^n-1
1/an=1/(2^n-1)<1/(2^n-2)<1/2^(n-1)
1/a1+1/a2+...+1/a(n+1)
=1+1/3+1/4+...+1/[2^(n+1)-1]
<1+1/2+1/4+1/8+...+1/2^n
=[1-(1/2)^(n+1)]/(1-1/2)=2-(1/2)^n<2
1/a1+1/a2+...+1/a(n+1)<2
你那个我也不知道哦
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-11-26
推荐值得参考,只是从提问者提出的问题看,问题中的结果固然不对,但是我觉得倒是可以改成:证明:1/a1+1/a2+1/a3+...+1/an+1<3/2,以便结果的范围可以更缩小。
过程如下:借鉴楼上结论:an=2^n-1,
∵2^n=(1+1)^n=Cn(0)+Cn(1)+Cn(2)+…Cn(m)…+Cn(n) (0=<m=<n)
【Cn(m)为组合数。此步为二项式的展开过程】
∴当n>=2时,2^n-1>=n+n(n-1)/2=n(n+1)/2
=>1/an=1/(2^n-1)=<2/[n(n+1)]=2[1/n-1/(n+1)] 恒成立;
∴ 1/a1+1/a2+1/a3+...+1/an+1=1+1/a2+1/a3+...+1/an+1
=<1+2(1/2-1/3)+2(1/3-1/4)+……+2[1/(n+1)-1/(n+2)]
=1+2[1/2-1/(n+2)] 也恒成立
而1+2[1/2-1/(n+2)]是关于n在N上的增函数,故当n=2时有最小值,最小值为3/2,
故1/a1+1/a2+1/a3+...+1/an+1<3/2 恒成立
第2个回答  2012-11-23
a(n+1) = 2 a(n) + 1
∴ a(n+1) + 1 = 2 [ a(n) + 1 ]
a(n+1) + 1 = 2^n (a1+1) = 2^(n+1)
a(n+1) = 2^(n+1) ﹣ 1
。。。

...an+1=2an+1(n∈N*)证明:1\/a1+1\/a2+1\/a3+...+1\/an+1<2\/3
a(n+1)+1=2an+2=2(an+1)则 {an+1}为等比数列 公比q=2 首项a1+1=2 an+1=2^n an=2^n-1 1\/an=1\/(2^n-1)<1\/(2^n-2)<1\/2^(n-1)1\/a1+1\/a2+...+1\/a(n+1)=1+1\/3+1\/4+...+1\/[2^(n+1)-1]<1+1\/2+1\/4+1\/8+...+1\/2^n =[1-(1\/2)^(n...

已知数列{an}满足a1=1,An+1=2An+1(n属于N.)求证二分之n-三分之一小于...
因此{an+1}是首项为 a1+1=2 ,公比为 2 的等比数列,因此 an+1=2^n ,an=2^n-1 ,所以 a1\/a2+a2\/a3+...+an\/a(n+1)=(a1\/a2-1\/2)+(a2\/a3-1\/2)+...+[an\/a(n+1)-1\/2]+n\/2 =(2a1-a2)\/(2a2)+(2a2-a3)\/(2a3)+...+[2an-a(n+1)]\/[2a(n+1)]+n\/...

...a(n+1)=2an+1 (n∈N*),证明n\/2-1\/3<a1\/a2+a2\/a3+…+an\/a(n+1)<...
a(n+1)=2an+1即 a(n+1)+1=2(an+1)=2^n(a1+1)=2^(n+1)所以 a(n+1)=2^(n+1)-1 an=2^n-1 a1\/a2+a2\/a3+…+an\/a(n+1)=1\/3+3\/7+...+(2^n-1)\/[2^(n+1)-1]<1\/(3-1)+3\/(7-1)+...+(2^n-1)\/[2^(n+1)-2]=1\/2+1\/2+...+1\/2 =n\/2...

已知数列{an}满足条件:a1=1,a(n+1)=2an+1,n∈N* (3)证明:n\/2-1\/3<...
(3)首先,右边比较好证明,an\/a(n+1)=(2^n-1)\/(2^(n+1)-1)<2^n\/2^(n+1)=1\/2 这里利用了浓度不等式。【即:a\/b<(a+m)\/(b+m),其中0<a<b,m>0.这个很容易证明】累加后就可以证到右边了。另一方面,an\/a(n+1)=(2^n-1)\/(2^(n+1)-1)>(2^n-1)\/2^(n+...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(1)求证:数列{an+1}是等比...
证明:(1)an+1=2an+1,∴an+1+1=2(an+1),又a1=1,∴a1+1≠0,an+1≠0,an+1+1an+1=2,∴数列{an+1}是首项为2,公比为2的等比数列.即an+1=2n,因此an=2n-1.  …(6分)(2)∵4bn?n2=(an+1)n,∴4bn?n2=2n2,∴2bn-n=n2,即bn=12(n2+n).…(9...

已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}...
解答:(Ⅰ)证明:由题意得an+1+1=2(an+1),…(3分)又a1+1=2≠0. …(4分)所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)故bn=(2n?1)2n∴Tn=b1+b2+b3+…+bn=1?2+3?22+5?23+…+...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{..._百度知 ...
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2×2n-1=2n,∴an=2n-1.(II)解:由(I)可知:bn= n•2n 2 =n•2n-1.∴Sn=1×20+2×21+3×22+…+(n-1)•...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(1)计算a2,a3,a4,推测数列{a...
(1)由a1=1,an+1=2an+1,得a2=2a1+1=3,a3=2a2+1=7,a4=2a3+1=15.由数列前4项猜测:an=2n?1;(2)Sn=a1+a2+a3+…+an=21-1+22-1+…+2n-1=(2+22+23+…+2n)-n=2(1?2n)1?2?n=2n+1?n?2.

已知数列{an}满足:a1=1,anan+1=2n(n∈N*).(1)证明:对任意正整数n,an+2...
n∈N*,an+2an=2.…(3分)故数列{a2k-1},{a2k}都是公比为2的等比数列,…(4分)∵a1=1,a1a2=2,∴a2=2.…(5分)知:?k∈N*,a2k-1=a1×2k-1=2k-1,a2k=a2×2k-1=2k.…(6分)所以数列{an}的通项公式为an=2k?1,n=2k?12k,n=2k,k∈N*.…(7分)或...

设数列{an}满足:a1=1,an+1=2an+1(n∈N*)(Ⅰ)证明数列{an+1}为等比数列...
a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),a1+1=2,∴数列{an+1}是以2为首项,以2为公比的等比数列,∴an+1=2n,∴an=2n-1.(Ⅱ)解:∵bn=log2(an+1)=n,∴1bnbn+1=1n(n+1)=1n?1n+1,∴Tn=1-12+12?13+…+1n?1n+1=1-1n+1=nn+1.

相似回答