怎样用十字相乘法分解因式

如题所述

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。
对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)
2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
温馨提示:内容为网友见解,仅供参考
第1个回答  2006-08-02
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b本回答被网友采纳
第2个回答  2019-03-16
楼主:举个简单的例子:
X^2+7X-18
用十字相成法将-18分解为-2和9,因为-2+9=7刚好是X的一次项系数
用十字相成法表示就是
1
-2
1
9
所以分解结果是(X-2)(X+9)=X^2+7X-18
望采纳,谢谢

十字相乘法分解因式步骤
十字交叉法因式分解:先将二次项系数拆成两个乘积的形式,再将常数项拆成两个乘积的形式,然后交叉乘积后等于一次项系数。1、提取公因式法。2、公式法(平方差公式和完全平方公式)。例如:配方法和十字交叉法等。(x+2y)(2x-11y)=2x2-7xy-22y2。(x-3)(2x+1)=2x2-5x-3。(2y-3)(-11y+...

用十字相乘法分解因式,口诀是什么?
十字交叉法因式分解口诀:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x_+(a+b)x+ab的逆运算来进行因式分解。对于像ax_+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2...

怎么利用十字相乘法来分解因式?
十字相乘法十字相乘法一般用于二次三项式的因式分解。如x??-5x+6.要求变为(x+a)(x+b)的形式,则可以变为x╳xx+x=-5x.而a,b同号,所以a和b均为负数。(这要进行试商)最后得x-2╳x-3-2x-3x=-5x.所以x??-5x+6=(x-2)(x-3).十字相乘法的算法是...

十字相乘法分解因式
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,...

如何用十字相乘法分解因式?
1. 使用十字相乘法分解因式 (1)+2-4x-21:首先将式子进行分组,得到:(1+2) - (4x+21)。接下来,对每个分组应用十字相乘法:第一组:(1+2) = 3 第二组:(4x+21) = 4x+21 所以原始表达式可以分解为:3 - (4x+21)。2. 使用十字相乘法分解因式 (2)+-5xy-6y:首先将式子进行分组,...

怎样用十字相乘法分解因式
十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的...

如何用“十字相乘法”拆分因式?
十字相乘法是一种用于分解因式的数学方法,适用于系数不为1的二次三项式。通过这种方法,可以将一个二次三项式拆分成两个一次因式的乘积,从而简化解题过程。一、系数不为一的十字相乘法的乘积具体步骤 1、将二次项系数分解质因数。对于二次项2x^2 + 3x + 5,将2分解为2×1。2、将常数项分解质...

什么是十字相乘法因式分解
十字相乘法是因式分解中十四种方法之一,十字相乘法分解因式的口诀:首尾分解,交叉相乘,求和凑中。十字相乘法(CrossMultiplication)是因式分解中十四种方法之一,主要用于对多项式的因式分解。十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,...

十字相乘法解因式分解
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。例1 把2x²-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解...

如何用十字相乘法来分解因式
十字相乘法怎么用 1、十字相乘法的方法是十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处是用十字相乘法来分解因式或用十字相乘法来解一元二次方程。3、十字相乘法的优点是用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易...

相似回答