最后能给出4种不同的方法解,如果解法多的话我会追加积分
最好能给出4种不同的方法解答,打字打错了
已知x+y+z=0,x2+y2+z2=1,求xy+yz+xz,x4+y4+z4的解
即0=1+2*(xy+yz+xz)所以xy+yz+xz=-0.5 因为(xy+yz+xz)^2=X^2Y^2+Y^2Z^2+Z^2X^2+(x+y+z)*xy 所以(-0.5)^2= X^2Y^2+Y^2Z^2+Z^2X^2+0 X^2Y^2+Y^2Z^2+Z^2X^2=0.25 因为(X^2+Y^2+Z^2)^2=(X^4+Y^4+Z^4)+2*(X^2Y^2+Y^2Z^2+Z^2X^...
已知x+y+z=0,x2+y2+z2=1,则x(y+z)+y(x+z)+z(x+y)的值为___
∵(x+y+z)2=x2+y2+z2+2xy+2zx+2zy=0,x2+y2+z2=1,∴2xy+2zx+2zy=-1,则原式=xy+xz+xy+yz+zx+zy=2(xy+zx+zy)=-2.故答案为:-2.
已知x,y,z∈Z,且满足x+y+z=3,x3+y3+z3=3,求x2+y2+z...
解答:解:设x2+y2+z2=t,则 ∵(x+y+z)2=x2+y2+z2+2(xy+yz+xz),即9=t+2(xy+yz+xz),∴xy+yz+xz= 9-t 2 ,∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),∴3-3xyz=3(t- 9-t 2 ),∴xyz= 11-3t 2 ,∵x,y,z∈Z,t>0,∴t=1,3,∴x2+y...
若x,y,z满足x+y+z=1,x2+y2+z2=2,x3+y3+z3=114,求x4+y4+z4的值
∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx,∴xy+yz+zx=12(1-2)=-12,∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),∴xyz=112,x4+y4+z4=(x2+y2+z2)2-2(x2y2+y2z2+z2x2),∵x2y2+y2z2+z2x2=(xy+yz+zx)2-2xyz(x+y+z)=14-16=112...
已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是__
∵x+y+z=1①,x2+y2+z2=3②∴①2-②可得:xy+yz+xz=-1∴xy+z(x+y)=-1∵x+y+z=1,∴x+y=1-z∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1∵x2+y2=3-z2≥2xy=2(z2-z-1)?3z2-2z-5≤0?-1≤z≤53令f(z)=xyz=z3-z2-z,则f′(z)=3z2-2z-1=(...
设x,y,z>0,且x2+y2+z2=1,试求S=xy\/z+yz\/x+zx\/y的最小值
令a=xy\/z,b=zx\/y,c=yz\/x.故ab=x^2,ac=y^2,bc=z^2.从而ab+bc+ac=1 S^2 =(xy\/z+yz\/x+zx\/y)^2 = (a+b+c)^2 >= 3(ab+bc+ac)= 3 即 S >= sqr(3)(sqr为开根函数)当且仅当 x=y=z=(sqr(3))\/3 时等号取到 ...
已知x,y,z属于R,且x+y+z=1,x2+y2+z2=3,则xyz最大值
解答:解:∵x+y+z=1①,x2+y2+z2=3② ∴①2-②可得:xy+yz+xz=-1 ∴xy+z(x+y)=-1 ∵x+y+z=1,∴x+y=1-z ∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1 ∴xyz=z3-z2-z 令f(z)=z3-z2-z,则f′(z)=3z2-2z-1=(z-1)(3z+1)令f′(z)>0,...
...x²+y²+z²=1,且x+y+z≠0,则xy+yz+zx的取值范围是_百度知 ...
(x+y)2+(y+z)2+(x+z)2=2(x2+y2+z2+xy=yz=zx)=(-z)2+(-x)2+(-y)2=x2+y2+z2=1,即2(1+xy+yz+zx)=1,xy+yz+zx=-1\/2.(因为不知到平方怎么打,所以其中只有一个是2,请谅解)
已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求xy(x+y)+yz(y+z)+zx(z+x)的值
∵(x+y+z)(x²+y²+z²)=x³+y³+z³+x²(y+z)+y²(x+z)+z²(x+y)∴1*2=3+xy(x+y)+yz(y+z)+zx(z+x)∴xy(x+y)+yz(y+z)+zx(z+x)=2-3=-1
已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z...
(1)由条件可得 (x+y+z)2=x2+y2+z2+2(xy+yz+xz)=1,即 1=2+2(xy+yz+xz),∴xy+yz+xz=-12.再根据 x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),即3-3xyz=2+12,∴xyz=16.(2)由题意可得 (x2+y2+z2)2=x4+y4+z4+2x2?y2+2y2?z2+2x2?