已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值

已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.

无其他回答

已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z...
(1)由条件可得 (x+y+z)2=x2+y2+z2+2(xy+yz+xz)=1,即 1=2+2(xy+yz+xz),∴xy+yz+xz=-12.再根据 x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),即3-3xyz=2+12,∴xyz=16.(2)由题意可得 (x2+y2+z2)2=x4+y4+z4+2x2?y2+2y2?z2+2x2?

若x,y,z满足x+y+z=1,x2+y2+z2=2,x3+y3+z3=114,求x4+y4+z4的值
∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx,∴xy+yz+zx=12(1-2)=-12,∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),∴xyz=112,x4+y4+z4=(x2+y2+z2)2-2(x2y2+y2z2+z2x2),∵x2y2+y2z2+z2x2=(xy+yz+zx)2-2xyz(x+y+z)=14-16=112,...

已知x+y+z=2,x2+y2+z2=12则x3+y3+z3=
函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1\/3)2,从而有t-x=t-y=t-z,而x=y=z再由(...

已知x+y+z=0,x2+y2+z2=1,求xy+yz+xz,x4+y4+z4的解
所以xy+yz+xz=-0.5 因为(xy+yz+xz)^2=X^2Y^2+Y^2Z^2+Z^2X^2+(x+y+z)*xy 所以(-0.5)^2= X^2Y^2+Y^2Z^2+Z^2X^2+0 X^2Y^2+Y^2Z^2+Z^2X^2=0.25 因为(X^2+Y^2+Z^2)^2=(X^4+Y^4+Z^4)+2*(X^2Y^2+Y^2Z^2+Z^2X^2)即1=(X^4+Y^4+Z...

已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是__
∵x+y+z=1①,x2+y2+z2=3②∴①2-②可得:xy+yz+xz=-1∴xy+z(x+y)=-1∵x+y+z=1,∴x+y=1-z∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1∵x2+y2=3-z2≥2xy=2(z2-z-1)?3z2-2z-5≤0?-1≤z≤53令f(z)=xyz=z3-z2-z,则f′(z)=3z2-2z-1=(...

已知x+y+z=9,x2+y2+z2=29 x3+y3+z3=45,求xyz的值
(x+y+z)^2-(x^2+y^2+z^2)=2(xy+yz+zx)所以xy+yz+zx=(3^2-29)\/2=-10 (x+y+z)(x^2+y^2+z^2)=x^3+y^3+z^3+xy^2+xz^2+yx^2+yz^2+zx^2+zy^2 =x^3+y^3+z^3+xy(x+y)+yz(y+z)+zx(z+x)=x^3+y^3+z^3+xy(3-z)+yz(3-x)+zx(3-y)...

x+y+z=1,x2+y2+z2=3则z的范围
简单分析一下,详情如图所示

已知x,y,z属于R,且x+y+z=1,x2+y2+z2=3,则xyz最大值
解答:解:∵x+y+z=1①,x2+y2+z2=3② ∴①2-②可得:xy+yz+xz=-1 ∴xy+z(x+y)=-1 ∵x+y+z=1,∴x+y=1-z ∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1 ∴xyz=z3-z2-z 令f(z)=z3-z2-z,则f′(z)=3z2-2z-1=(z-1)(3z+1)令f′(z)>0,...

x+y+z=1,x2+y2+z2=3则z的范围
所以x+y=1-z x^2+y^2+z^2=3 x^2+y^2=3-z^2 所以 xy=(1\/2)[(x+y)^2-(x^2+y^2)]=(1\/2)[(1-z)^2-(3-z^2)]=z^2-z-1 所以x,y是关于t的二次方程t^2-(1-z)t+z^2-z-1=0等两个根 所以Δ=(-(1-z))^2-4(z^2-z-1)>=0 解得-1<=z<=5\/3 ...

已知x+y+z=0,x2+y2+z2=1,则x(y+z)+y(x+z)+z(x+y)的值为___
∵(x+y+z)2=x2+y2+z2+2xy+2zx+2zy=0,x2+y2+z2=1,∴2xy+2zx+2zy=-1,则原式=xy+xz+xy+yz+zx+zy=2(xy+zx+zy)=-2.故答案为:-2.

相似回答