排列组合应用问题方法总结

如题所述

第1个回答  2019-11-15
捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。题目特点:“若干相同元素分组”、“
每组至少一个元素”。
例1(08-57)一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?
A.20
B.12
C.6
D.4
分两种情况考虑
1、
这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×C41=8种
2、
这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由P42=4×3=12种
综上得,共8+12=20种
此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有(
)种站法。
A.120
B.72
C.48
D.24
选B
插空法
我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即P42=12。这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即P33=6,综上,共有6*12=72种
例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有(
)种站法。
A.120
B.72
C.48
D.24
选C
捆绑法
此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即P44=24,又因为A、B两人虽然是站在一起了,但还要考虑一个谁在前谁在后的问题,这有两种情况,也就是P22=2,综上,共有48种。
例4:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
A.
20
B.21
C.23
D.24
选B
插隔板法
解决这道题只需将8个球分成三组,然后依次将每一个组分别放到一个盒子中即可。8个球分成3个组可以这样,用2个隔板插到这8个球中,这样就分成了3个组。这时我们考虑的问题就转化成了我们在8个球的空隙中放2个隔板有多少种放法的问题。8个球有7个空隙,7个空隙要放2个隔板,就有C72种放法,即21种.
例5:有9颗相同的糖,每天至少吃1颗,要4天吃完,有多少种吃法?
A.
20
B.36
C.45
D.56
选D
插隔板法
原理同上,只需用3个隔板放到9颗糖形成的8个空隙中,即可分成4天要吃的。就有C83种。C83=56种。

排列组合应用问题方法总结
插空法:若要求某些元素不相邻,可以先将其它元素排好,然后将不相邻元素插入到已有元素形成的空隙或两端。比如,有3个不同元素,要插入2个新元素,且新元素不能相邻,首先排列原有3个元素,形成空隙,然后在这些空隙中插入新元素,计算插入方式的数量。插隔板法:在解决具有相同元素分组的问题时,可以采用...

怎样用排列组合的知识解决问题?
1、要使至少两个发生所以可以考虑为恰有两个发生与三个都发生的可能情况之和,故第一问按照排列组合公式表达为 C(2,3)+C(3,3)=3*2\/(2*1)+3*2*1\/(3*2*1)=4 (其中括号内第一个数字为上标,第二个数字为下标)。2、由1可得恰有两个发生的表达式为 C(2,3)=3*2\/(2*1)=3 ...

排列组合应用问题方法总结
捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。插空法:当要求某几个元素必须不相邻(挨着)时,可先...

如何使用排列组合解决实际问题?
4.组合与组合数公式:从n个不同元素中取出m个元素拼成一组,称为从n个不同元素中取出m个元素的一个组合。所有这样的组合的个数记为C(n,m)。5.排列、组合的综合应用:有些问题既可以用排列也可以用组合来解决,这就需要根据具体情况来确定使用哪种方法。

管理类联考数学之排列组合——最常用的7种计数方法
排列组合——最常用的7种计数方法 一、穷举法(枚举法)适用于选项数量较少或题目总数较小的情况。特别适合解决骰子问题。在应用时需按照一定规律列举,避免遗漏或重复。二、捆绑法 针对相邻或必须在一起的元素排列组合问题。首先将相邻元素视为一个整体与其他元素排列,然后对这个整体内部进行排列。三、插...

排列组合解题技巧
排列、组合、二项式定理公式口诀:加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模...

知道了排列与组合含义,可是总是不知道要怎么用,举个例子说明下_百度知...
总结:排列组合问题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。具体说,解排列组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。(3)先不考虑附加...

排列组合问题的类型及解答策略
类型二:排组混合问题 对于排列组合的混合应用题,破解策略:采取先选取元素,后进行排列,即“先选后排、分步实施法”。例:从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有(?摇?摇)A.24种?摇?摇B.18种?摇?摇C.12...

高中数学排列组合解题技巧
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其他元素.若以位置分析为主,需先满足特殊位置的要求,再处理其他位置.若有多个约束条件,这类题目往往是考虑一个约束条件的同时还要兼顾其他条件.例1:由0,1,2,3,4,5可以组成多少个没...

谁能帮我归纳一下高中排列组合题的方法?
本题考查组合问题。解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列...

相似回答
大家正在搜