数学家小时候的数学故事,最好是在100字以内,

这是我的数学作业,14篇,谢谢你们了,谢谢大家

陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。
女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

数学会女前辈高扬芝

高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。

高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。

高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。

她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。

高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。

第一位数学女博士徐瑞云

徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。

徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。

徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。

完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。

1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。

华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。

此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。

从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。

1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。

晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁
回答者:lionel_future - 兵卒 一级 7-20 10:13

中国古代数学家--祖冲之
他的家庭,从曾祖父起,大都对天文、历法和数学很有研究。祖冲之从小就阅读了许多天文和数学方面的书籍,勤奋好学,刻苦实践,亲自观察天象,进行推算,终于使他成为中国古代杰出的数学家和天文学家。 在汉以前,中国一般用三作为圆周率数值,即...

中国古代数学家-墨子 科学家小时候勤奋学习故事 中国古代名人故事
教育故事>>名人故事:中国科学家 中国古代数学家-墨子 中国古代数学家-墨子 中国基础教育网 墨子[公元前468-376年] ,名翟,战国时期鲁国人,他是中国古代一位著名的学者。他创立了墨家学派,倡兼爱学说,《墨经》并非墨子一人所着,但书...

中国古代数学家-刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章...刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代...
数学家华罗庚小时候的轶事
华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-08-12
1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的
「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而
发行的。

拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,
靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。

在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独
的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真
正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是
肺病却蚕食了他的生命,他在三十三岁时悄然逝去。

他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小
时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师
在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生
兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达
高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几
何的兴趣。

有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个
。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师
下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:
「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差
不多在这个时候他对等差,等比级数的性质自己作了研究。

在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,
有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把
整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后
来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,
偷偷地放到裏的屋梁上。

他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用
数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微
积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,
他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。

在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获
得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,
结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并
参加1907年的「文科第一考试」,。是又失败了。

在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补
习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几
何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏
,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他
生活困难,几次在中餐时邀他在家裏吃些东西。

根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的
女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费
用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。

拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为
拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些
钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学
才能。

接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德
拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就
对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请
你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计
算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的
字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭
都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心
里是很惭愧,已经有一个月不去拿钱了。

很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十
五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学
家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定
理和公式。

哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果
,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来
到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉
玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地
用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论
的知识。比他教给拉玛奴江的还多。

从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个
虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自
己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身
上有无名的疼痛。

后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地
教授讲他在病中的一个故事:

有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛
奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:
「这是最小的整数能用二种方法来表示二个整数的立方的和。」

(1729=13+123=93+103)

拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一
些预测的结果,还是目前数学家正想法证明的。

他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等
数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他
矗立一个大理半身像。

如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿
死的小孩,他们有许多会是未来的拉玛奴江!」

Top

高斯

高斯-被誉为「数学王子」的德国大数学家,物理学家和天文
学家。

德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟
大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门
数学的分支里没有用到他的一些研究成果。

贫寒家庭出身

高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色
各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受
过什麼教育。

母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石
匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能
手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所
知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为
只有力气能挣钱,学问对穷人是没有用的。

高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说
他在还不会讲话的时候,就已经学会计算了。

他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工
人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算
出来。

父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!
算错了,钱应该是这样.....。」

父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地
方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不
知不觉时,他自己学会了计算。

另外一个著名的故事亦可以说明高斯很小时就有很快的计算能
力。当他还在小学读书时,有一天,算术老师要求全班同学算出以
下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答
案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯
的答案是正确无误。

原来 1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101

前后两项两两相加,就成了50对和都是 101的配对了
即 101 × 50 = 5050。

按:今用公式

表示 1 + 2 + ... + n

高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上
床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往
带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉
卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的
灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝
睡觉。

高斯的算术老师本来是对学生态度不好,他常认为自己在
穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴
。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高
斯有什麼帮助。

他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴
和比他大差不多十岁的老师的助手一起学习这本书。这个小孩
和那个少年建立起深厚的感情,他们花许多时间讨论这里面的
东西。

高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般
情形,这里 n可以是正负整数或正负分数。当他还是一个小学生
时就对无穷的问题注意了。

有一天高斯在走回家时,一面走一面全神贯注地看书,不
知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦
斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈
,她发现他完全明白所读的书的深奥内容。

公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖
的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。

费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也
赏识他的才能,於是决定给他经济援助,让他有机会受高深教
育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反
对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更
有用些,那高斯又怎麼会成材呢?

高斯的学校生涯

在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名
的学院(程度相当於高中和大学之间)。在那里他学习了古代
和现代语言,同时也开始对高等数学作研究。

他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的
作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积
分理论。

1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大
学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯
。许多外国学生也到那里学习语言、神学、法律或医学。这是
一个学术风气很浓厚的城市。

高斯这时候不知道要读什麼系,语言系呢还是数学系?如
果以实用观点来看,学数学以后找生活是不大容易的。

可是在他十八岁的前夕,现在数学上的一个新发现使他决
定终生研究数学。这发现在数学史上是很重要的。

我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,
内角也一样的 n 边多边形。

希腊的数学家早知道用圆规和没有刻度的直尺画出正三、
四、五、十五边形。但是在这之后的二千多年以来没有人知道
怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多
边形。

还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和
圆规画出当且仅当 n 是底下两种形式之一:

k= 0,1,2, ...

十七世纪时法国数学家费马 ( Fermat ) 以为公式
在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4
是质数,F5不是)。

高斯用代数方法解决了二千多年来的几何难题,而且找到
正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定
一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上
一个正十七边形,以纪念他少年时最重要的数学发现。

1799年高斯呈上他的博士论文,这论文证明了代数一个重
要的定理:任何一元代数方程都有根。这结果数学上称为”代
数基本定理”。

事实上在高斯之间有许多数学家认为已给出了这个结果的
证明,可是没有一个证是严密的,高斯是第一个数学家给出严
密无误的证明,高斯认为这个定理是很重要的,在他一生中给
了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好
费迪南公爵给他钱印刷。

二十岁时高斯在他的日记上写,他有许多数学想法出现在
脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研
究的成果写成一本叫<算学研究>,并且在二十四岁时出版,
这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,
这书可以说是数论第一本有系统的著作,高斯第一次介绍”同
余”这个概念。

Top

巴比仑

灿烂的古巴比仑文化

发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底
河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利
亚和伊拉克。

现在我们生活的「星期制度」是源於古代巴比仑。巴比仑
人把一年分为十二个月,七天组成一个星期,一个星期的最后
一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们
现在的礼拜日。

我们现在一天二十四小时,一小时有六十分,一分有六十
秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六
十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人
的贡献。

古代巴比仑人的书写工具是很奇特的,他们利用到处可见
的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端
磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥
板书。

希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河
,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁
,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械
工程的研究,这是当时其他国家少有的。

可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄
土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到
这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄
土下,上面只有野羊奔跑的荒原。

到了十九世纪四十年代,法国和英国考古学家发掘了古城
及获得很多文物,世人才能重新目睹这个地面上失踪的古国,
了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼
微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥
板书,包含历史、文学、外交、商业、科学、医药的记录。巴
比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记
载几百种植物的名字及其性质。化学家懂得一些矿物的性质,
除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很
高。

有这样高文化水平的民族,他们的数学也该是不错吧?这
里就谈谈他们这方面的贡献。

巴比仑人的记数法

巴比仑人用两种进位法:一种是十进位,另外一种是六十
进位。

十进位是我们现在普通日常生活中所用的方法,打算盘的
「逢十进一」就是基於这种原理。

巴比仑人没有算盘,但他们发明了这样的「计算工具」协
助计算(图一)。在地上挖三个长条小槽,或者特制有三个小
糟的泥块,用一些金属小球代表数字。

比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的
税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加
了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可
是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,
9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽
上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加
3 个小球。

现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十
个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。

最后泥板上的数字 682 就是加的结果。这不是很好玩吗?
(图二)我们可以利用这方法以实物教儿童认识一些大数的加
法。

六十进位制目前是较少用到,除了在时间上我们说:一小
时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。

可是你知道吗?就是古代的巴比仑人定下一年有三百六十
五天, 十二个月,一个月有二十九天或三十天,每七天为一个
星期,一个圆有三百六十度,一小时有六十分,一分有六十秒
等等,我们现代还是继续采用。

考古学家在一块长三又八分之一吋,宽二吋,厚四分之三
吋的泥板书上发现了巴比仑人的记数法。

这泥板的中间从上到下有像(图四)的符号:读者可以看
出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。

这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边
前五行是形如:

很明显的这应该代表 10,20,30,40,50。

可是接下来的却是这样的符号:

如果我们前面知道的符号是写成:
第2个回答  2009-08-16
1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的
「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而
发行的。

拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,
靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。

在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独
的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真
正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是
肺病却蚕食了他的生命,他在三十三岁时悄然逝去。

他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小
时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师
在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生
兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达
高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几
何的兴趣。

有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个
。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师
下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:
「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差
不多在这个时候他对等差,等比级数的性质自己作了研究。

在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,
有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把
整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后
来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,
偷偷地放到裏的屋梁上。

他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用
数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微
积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,
他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。

在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获
得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,
结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并
参加1907年的「文科第一考试」,。是又失败了。

在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补
习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几
何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏
,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他
生活困难,几次在中餐时邀他在家裏吃些东西。

根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的
女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费
用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。

拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为
拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些
钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学
才能。

接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德
拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就
对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请
你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计
算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的
字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭
都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心
里是很惭愧,已经有一个月不去拿钱了。

很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十
五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学
家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定
理和公式。

哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果
,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来
到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉
玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地
用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论
的知识。比他教给拉玛奴江的还多。

从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个
虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自
己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身
上有无名的疼痛。

后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地
教授讲他在病中的一个故事:

有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛
奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:
「这是最小的整数能用二种方法来表示二个整数的立方的和。」

(1729=13+123=93+103)

拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一
些预测的结果,还是目前数学家正想法证明的。

他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等
数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他
矗立一个大理半身像。

如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿
死的小孩,他们有许多会是未来的拉玛奴江!」

Top

参考资料:http://content.edu.tw/junior/math/tn_kh/store.htm

第3个回答  2009-08-19
3.华罗庚
出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.
第4个回答  2009-08-13
高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。

高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。

高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。

她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。

高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长
相似回答