微分方程的通解,通解是什么意思,可以举例说明吗?

如题所述

对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。

对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。

举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通解得到
0=0+C--->C=0于是通解化作特解:y=x^2,表示一条抛物线。所以,微分方程的通解表示解曲线族,特解则表示该曲线族中的一条。

扩展资料:

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

含有未知函数的导数,如  的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程 。

参考资料:百度百科——通解

温馨提示:内容为网友见解,仅供参考
第1个回答  2015-05-12
举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通解得到

0=0+C--->C=0于是通解化作特解:y=x^2,表示一条抛物线。

所以,微分方程的通解表示解曲线族,特解则表示该曲线族中的一条。本回答被网友采纳
第2个回答  2021-01-09
第3个回答  2019-12-21
对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。
对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。
举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通解得到
0=0+C--->C=0于是通解化作特解:y=x^2,表示一条抛物线。所以,微分方程的通解表示解曲线族,特解则表示该曲线族中的一条。

微分方程的通解,通解是什么意思,可以举例说明吗?
对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通...

微分方程通解是什么?
通解就是对所有的条件都适用,特解就是在一个或者多个条件限制下得到的解。通解是这个方程所有解的集合,也叫作解集。特解是这个方程的所有解当中的某一个,也就是解集中的某一个元素。例如,通解得y=kx(通解),y=2x(特解)。举例:如果微分方程的解中含有任意常数,且任意常数的个数与微分方...

微分方程通解是什么?
微分方程的通解是指描述微分方程所有可能解的表达式。微分方程是一种描述变量之间变化关系的数学模型,它涉及到未知函数的导数或微分。通解则是这个方程所有可能解的集合,它通常是一个包含未知常数的函数表达式,这个常数由初始条件或边界条件来确定。举例来说,对于一阶线性微分方程 dy\/dx = f(x)y + g...

微分方程中,到底什么是通解和特解,最后表示成什么等于什么的形式?
通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族 特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如y=0就是上面微分方程的特解。特解在解非其次方程等一些微分方程有特殊的作用。

微分方程的通解是什么意思?
在没有给出初值条件下的微分方程的解,就是通解 n阶微分方程就有n个常数项存在 例如一阶微分方程y'+y=f(x)必有y=C1*e^(αx)的形式,只有C1这个未知常数 给出初值条件后,代入通解能确定C1的值 知道C1后,这个解称为”特解“隐式通解,就是说这个通解中的x和y不能完全分离 例如xy+lny =...

什么是微分方程的通解?
求解过程在课本中分门别类写得很清楚,由此得到的解,称为【通解】,通解代表着这是解的集合。我们中学就知道,M个变量,需要M个个约束条件才能全部解出。例如,解三元一次方程组,需要三个方程。由此,在变量相同的条件下,多一个约束条件f(y),就可以多确定一个解,此解就称为【特解】。

微分方程的通解是什么意思?
第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关;通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2...

求问:请问线性微分方程的通解是否就是其所
通解是指带有你定义的任意常数的解,特解就是不带有你定义任意常数的解,他们两的区别就是通解多了任意常数,可以是一个常数也可以是多个。有些数学题的答案不是有限的一个和几个,而是无数个,把这无数个解用某种形式表达出来,称为通解.这种通解在三角方程中经常出现.例:sinx=1,通解是x=90°+k*...

什么是微分方程的通解和特解什么叫微分方程的通解和特解
1、通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy=8x^2的特解,但是y=4x^2+C就是xy=8x^2的通解,其中C为任意常数。2、定义:若微分方程的解中含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相同,则称此解为微分方程的通解;而若微分方程的解不含任意常数,则...

一个微分方程的通解是否包含了该方程的所有的解?最好能够举个例,谢谢...
这个是当然了。这就是通解的含义。对于特定的初值,在有解的情况下通解中的常数变量都对应着特定的值。比如y'=y,它的通解是y=ce^x, 这里c为任意常数。对于给定的初值x=x0, y=y0, 即y0=ce^x0 则可求出常数值:c=y0\/e^(x0)

相似回答