微分方程中,到底什么是通解和特解,最后表示成什么等于什么的形式?

鄙人对定义不是很清楚……,做题有点乱,望指教!谢谢!!!

通解加C,C代表常数,特解不加C。

通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族

特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如y=0就是上面微分方程的特解。

特解在解非其次方程等一些微分方程有特殊的作用。

扩展资料

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-05-26

通解加C,C代表常数,特解不加C。

通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族

特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如y=0就是上面微分方程的特解。

特解在解非其次方程等一些微分方程有特殊的作用。

扩展资料:

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

本回答被网友采纳
第2个回答  推荐于2017-09-18
通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族
特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如y=0就是上面微分方程的特解。

特解在解非其次方程等一些微分方程有特殊的作用追问


嗯,可以理解,谢谢,还想问一下最终结果表示成什么形式即可?我见有的题表示为㏑y=。。。,就结束了,不用化为y=。。。的形式吗?

追答

微分方程的解并不一定都是函数,例如y'=-x/y,通解就是x^2+y^2=C,C是常数。这个解如果写成y=...的形式反而显得很麻烦。解是一个x,y的方程,并不一定是y关于x的函数,解有时候不写成函数的形式反而结果更好

本回答被提问者采纳
第3个回答  2013-05-19
如果是一元的话,比如f(x)=x^2+x+c 这样就是通解,如果根据已知条件代入之后求出了C,那么这样的f(x)就是特解了
第4个回答  2013-05-19
齐次方程也就是方程右边常数项为0的,齐次方程有通解,你可以理解成有无穷解,然后齐次方程右边如果加上了一个函数,就变成了非齐次方程,这时候,方程就会有特解,通常来说,非齐次方程的解救等于对应的齐次方程的通解加上非齐次的特解,你可以跟着书本的步骤验证的,这样能听得懂吗?不懂追问好了。追问

嗯,可以理解,谢谢,还想问一下最终结果表示成什么形式即可?我见有的题表示为㏑y=。。。,就结束了,不用化为y=。。。的形式吗?

追答

不需要的

微分方程中,到底什么是通解和特解,最后表示成什么等于什么的形式?
通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族 特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如y=0就是上面微分方程的特解。特解在解非其次方程等一些微分方程有特殊的作用。

微分方程中,到底什么是通解和特解,最后表示成什么等于什么的形式??
通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数.通解是一个函数族 特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解.如y=0就是上面微分方程的特解.特解在解非其次方程等一些微分方程有特殊的作用,9,等我爱的人 ...

微分方程的通解,通解是什么意思,可以举例说明吗?
对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通...

常微分方程 常微分方程基本概念,什么事通解,隐式通解,定解条件
在没有给出初值条件下的微分方程的解,就是通解 n阶微分方程就有n个常数项存在 例如一阶微分方程y'+y=f(x)必有y=C1*e^(αx)的形式,只有C1这个未知常数 给出初值条件后,代入通解能确定C1的值 知道C1后,这个解称为”特解“隐式通解,就是说这个通解中的x和y不能完全分离 例如xy+lny =...

什么是通解和特解?
(1)通解 通解通常是由微分方程自身的特性所决定的。对于n阶线性齐次微分方程(其中n为正整数),它的通解一般由n个线性无关的函数的线性组合构成。而对于非齐次方程,它的通解一般等于对应齐次方程的通解加上一个特解。通解的一个显著特点是它可以表示出微分方程的所有解。因此,通解被广泛应用于物理...

微分方程的通解和特解有什么区别呢?
通解是这个方程所有解的集合,也叫作解集。特解是这个方程的所有解当中的某一个,也就是解集中的某一个元素。例如,通解得y=kx(通解),y=2x(特解)。举例:如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解!例如y=x^2+c是y'=x的通解,...

谁能告诉我微分方程 中 特解和通解的关系?急
通解包含特解,通解是这个方程所有解的集合,也叫解集,特解是这个方程的所有解当中的某一个,也就是解集中的某一个元素。特解就是确定了常数的通解。通解是解中含有任意常数,且任意常数的个数与微分方程的阶数相同。特解是解中不含有任意常数,一般是给出一组初始条件,先求出通解,再求出满足该...

什么是微分方程的通解和特解 什么叫微分方程的通解和特解
1、通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy=8x^2的特解,但是y=4x^2+C就是xy=8x^2的通解,其中C为任意常数。2、定义:若微分方程的解中含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相同,则称此解为微分方程的通解;而若微分方程的解不含任意常数,则...

微分方程的解是指什么?
微分方程的解通常由通解和特解两部分构成。一、通解(一般解)对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解或者部分解的统一形式,称为通解。通解代表着这是解的集合。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该...

微分方程的通解和特解有什么区别?
1、从两者的性质上来说,通解包含特解,特解仅仅是通解的一部分。2、从两者的形式上来说,通解给出解的形式包含满足微分方程的所有解,它包含一些不确定参数。如果给出微分方程的初始条件,则可以确定参数的具体值,得到唯一的特解。举一个简单例子:因此,两者区别在于特解是在通解的基础上给予它初始...

相似回答