曲线积分格林公式计算星形线面积x=acos^3t,y=asin^3t.

曲线积分格林公式计算星形线面积x=acos^3t,y=asin^3t.曲线积分格林公式计算星形线面积x=acos^3t,y=asin^3t.请问,用格林公式要不要挖去奇点?

格林公式求星型线 x=acos³t,y=asin³t的面积.

S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3a²sin⁴tcos²t)dt

=[0,2π](3a²/2)∫(cos²tsin²t(cos²t+sin²t)dt=[0,2π](3a²/2)∫(cos²tsin²t)dt

=[0,2π](3a²/2)∫[(1/4)(1+cos2t)(1-cos2t)dt=[0,2π](3a²/2)∫[(1/4)(1-cos²2t)dt

=[0,2π](3a²/2)[(1/8)∫dt-(1/32)∫cos4td(4t)]

=(3a²/2)[t/8-(1/32)sin4t][0,2π]=(3/8)πa²

扩展资料:

定义:

设D为平面区域,如果D内任一闭曲线所围的部分区域都属于D,则D称为平面单连通区域。直观地说,单连通区域是没有空间的区域,否则称为复连通区域。

当xOy平面上的曲线起点与终点重合时,则称曲线为闭曲线。设平面的闭曲线L围成平面区域D,并规定当一个人沿闭曲线L环行时,区域D总是位于此人的左侧,称此人行走方向为曲线L关于区域D的正方向,反之为负方向。 

含义:

在平面闭区域D上的二重积分,可通过沿闭区域D的边界曲线L上的曲线积分来表达;或者说,封闭路径的曲线积分可以用二重积分来计算。

如区域D不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立. 

注意:对于复连通区域D,格林公式的右端应包括沿区域D的全部边界的曲线积分,且边界方向对区域D来说都是正向。

格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛。

参考资料:百度百科-格林公式

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-06-25

简单计算一下即可,答案如图所示

第2个回答  2017-05-22

本回答被提问者采纳
第3个回答  2020-02-25
我知道你肯定是设星形线一点的坐标为(cost,sint),然后cost就等于你说的那个。不能这样设啊,你之所以会这样设,肯定是受高中数学三角函数单位圆的影响,在单位元里面是可以这样设的,因为单位元的半径是1,而由勾股定理恰好有cos^2+sin^2=1,因此单位元就可设其上一点(cosx,sinx),但是你这里,星形线不能这样设!
第4个回答  2021-01-08

相似回答