已知集合A={X|X²+pX+q=X},B={X|(X-1)²+p(X-1)+q=X+1} 问题:若A={2},求集合B
已知A={x|x2+px+q=x},B={x|(x-1)2+p(x-1)+q=x+1},当A=2时,求集合B
解题技巧:A={2},则方程x²+(p-1)x+q=0只有一个解,x=2。判别式=0=(p-1)²-4q=0。x=2,4+2(p-1)+q=0,所以(p-1)²+8(p-1)+16=0,p-1=-4,p=-3,q=4,所以B是(x-1)²-3x+3+4=x+1,所以 B={3+√2,3-√2}。集合通常用A,B,C...
...{x│x²+px+q=x},集合B={(x-1)²+p(x-1)+q=x+3},当A={2}时...
A={2} 所以 A={x|x=2),因此:x²+px+q=x=2 x²+px+q=2 所以:△=p²-4(q-2)=0 (因为只有1解)4+2p+q=2 (因为x=2)q=-2-2p p²-4(-2-2p-2)=0 p²+8p+16=0 p=-4 q=-2-2p=6 B={x|(x-1)²+p(x-1)+q=x+3} ={x...
已知集合A={3p+2q}p>q且p,q
B={x│2x²-7x+3=0} 2x²-7x+3=0 ==>(2x-1)(x-3)=0 ==>x=1\/2或x=3故集合B为{1\/2,3} 由于 A∩B=A 故集合A有三种可能 第一种可能A={1\/2,3} 故1\/2和3为x²+px+q=0的两个根 根据韦达定理x1+x2=-p\/1 故1\/2+3=-p 得p=-7\/2 根据韦达定理...
高一数学集合间的基本关系的知识点
【例1】试用Venn图表示集合A={x|x2-16=0}. 解:集合A是方程x2-16=0的解集,解方程x2-16=0,得x1=4,x2=-4,所以A={-4,4},用Venn图表示如图所示. 对Venn图的理解 Venn图表示集合直观、明确,封闭曲线可以是矩形、椭圆或圆等等,没有限制. 2.子集 定义 一般地,对于两个集合A,B,如果集合A中任意一...
高一的知识点总结
【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。 解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3. ∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a ∵a∩b={1} ∴1∈a ∴方程x2+px+q=0...
设集合A={X|X⊃2-3X+2=0,X∈R},B={X|X⊃2;+2(a+1)X+a⊃2;-5=...
A; x=1或x=2 由题意知 A∩B={2},所以B中有元素2 把x=2带入B 得 4+4(a+1)+a^2-5=0 解得a=-1 或a=-3 带入B符合题意 所以a=-1 或a=-3
...+3px+2=0},B={x|2x⊃2;+x+q=0},其中p,q为常数,x属于R,当A∩B={...
x=1\/2同时满足两方程,将x=1\/2分别代入两方程:2(1\/2)²+3p(1\/2)+2=0 整理,得 3p=-5 p=-5\/3 2(1\/2)²+(1\/2)+q=0 解得q=-1
集合的表示方法
所以 2+2=-p,2*2=q p=-4,q=4 p^2+q^2=32 A={2},表明方程x²+px+q=x,即x^2+(p-1)x+q=0有两个相等的实根2 所以 2+2=-p+1 2*2=q p=-3,q=4 (x-1)²+p(x-1)+q=x+3化为 x^2-6x+5=0 解得:x1=1,x2=5 所以 集合B={1,5} ...
已知集合A是方程x平方+px+q=x的解集,集合B是方程x平方+px-q=0的解...
方法一:集合A中只有一个元素2,也就是说方程只有一个解 用判别式(p-1)^2-4q=0 同时将2代入方程得到4+2p+q=2 解得p=-3,q=4 所以:x²-3x-4=0 (x-4)(x+1)=0 x-4=0或x+1=0 x=4或x=-1 即B={4,-1} 方法二:待定系数法 方程x²+px+q=x只有一个根x=...
关于集合的几道题!!!急!!!
CuA )∩(CuB)= {x|x≥4};3) 集合A={x | x²+px+q=0},B={x | x²-px-2q=0},且A∩B={-1} ∴1-p+q=0且1+p-2q=0,得p=3,q=2 ∴A={x | x²+3x+2=0}={-1,-2},B={x | x²-3x-4=0}={-1,4},A∪B={-2,-1,4}....