预料不到的考试的悖论的答案

(*^__^*) 嘻嘻……,帮帮忙找找背!谢谢

第1个回答  2009-08-27
一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考

这个就是预料不到的考试的悖论.

假如到了星期四中午就可以知道是星期五考试了,那麼就可以排除星期五了.既然排除了星期五,那麼到了星期三中午的时候,就可以排除星期四了.如此类推.这样表面上是可以一直排除考试的日子,而且推理过程没有错误.但是这种推理是从星期四中午开始的,而且是一直向星期三星期二推理的,这里运用了倒推思维,这种思维在现实中是不可能的,因为人不可能先过了星期五再过星期四这样倒著过来的
第2个回答  推荐于2016-01-27
谎言者悖论
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。
《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。
人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:
1-2 “我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。它的一个翻版:
1-3 “这句话是错的”
这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。

理发师悖论
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。 反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。
因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。

集合论悖论
“R是所有不包含自身的集合的集合。”
人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。
继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。

书目悖论
一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?
这个悖论与理发师悖论基本一致。

苏格拉底悖论
有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立 “定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。
苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”

“言尽悖”
这是《庄子·齐物论》里庄子说的。后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?我们常说:
1-7 “世界上没有绝对的真理”
我们不知道这句话本身是不是“绝对的真理”。
1-8 “荒谬的真实”
有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。
这些例子都说明,在逻辑上它们都无法摆脱概念自指所带来的恶性循环。有没有进一步的解决办法?在下面一节的最后一部份还将继续探讨。

二分法悖论
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。因此,这个物体永远也到达不了D。
这些结论在实践中不存在,但是在逻辑上无可挑剔。
芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。这就是说感官是不可靠的,没有逻辑可靠。
他认为:“穷尽无限是绝对不可能的”。根据这个运动理论,芝诺还提出了一个类似的运动佯谬:
2-3 “飞矢不动”
在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如:
2-4 “飞鸟之景,未尝动也”
这是中国名家惠施的命题,与“飞矢不动”同工异曲。这就是不可抗拒的推理和不可回避的实事相冲突。
德国哲学家尼采在《希腊悲剧时代的哲学》里有一章《可疑的悖论》,称芝诺的悖论为“否定感官的悖论”。尽管阿基里斯在赛跑中追上起步领先的乌龟完全合乎事实,但为什么“不合逻辑”?因为芝诺运用了“无限”这个概念,这是一种逻辑上的假设,而现实世界里是不可能有无限者存在的,这就出现了假设与现实的矛盾。

“父在母先亡”
这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”或者是“父亲在母亲以前就去世了。”真是左右逢源。
从逻辑顺序上看,上面这两个例子正好是反其道而用。无论正命题还是反命题都可以根据所谓的客观理由进行诡辩,形成自圆其说或诘难。所以葛拉西安在《智慧书:永恒的处世经典》中说:“诡辩是一种欺骗,乍一听,它蛮有道理,并因其刺激、新奇而令人心惊,但随后,当其虚饰之伪装被揭穿,就会自取其辱。”

邓析赎尸诡论
《吕氏春秋》记载了这样一个故事:洧水发了大水,淹死了郑国富户家的一员。尸体被别人打捞起来,富户的家人要求赎回。然而捞到尸体的人要价太高,富户的家人不愿接受,他们找邓析出主意。邓析说:“不用着急,除你之外,他还会卖给谁?”捞到尸体的人等得急了,也去找邓析要主意。邓析却回答:“不要着急,他不从你这里买,还能从谁那里买?”
邓析生在春秋末年,与老子和孔子基本同时,是战国名家的鼻祖,著名的讼师,他的著作已经失传。
同一个事实,邓析却推出了两个相反的结论,每一个听起来都合乎逻辑,但合在一起就荒谬了。邓析是不是希望他们相持一段时间后,双方都可以找到一个可以接受的价格平衡点?我们只能猜测。

“白马非马”
战国时赵国人公孙龙曾经著有《公孙龙子》一书,平原君礼遇甚厚。其“白马非马”和“坚白异同之辩”都是他的著名命题。
据说,公孙龙有一次骑马过关,把关的人对他说:“法令规定马不许过。”公孙龙回答说:“我骑的是白马,白马不是马,这可是两回事啊。”公孙龙的“白马”有没有过关,我们不得而知。从常人的观点来看,守关的兵士八成认为公孙龙是在诡辩。这也是一个逻辑上“莫能与辩”,现实中不能成立的例子。
冯友兰认为《公孙龙子》里的《白马论》对“白马非马”进行了三点论证:
一是强调“马”、“白”、“白马”的内涵不同。“马”的内涵是一种动物,“白”的内涵是一种颜色,“白马”的内涵是一种动物加一种颜色。三者内涵各不相同,所以白马非马。
二是强调“马”、“白马”的外延的不同。“马”的外延包括一切马,不管其颜色的区别;“白马”的外延只包括白马,有颜色区别。外延不同,所以白马非马。
三是强调“马”这个共相与“白马”这个共相的不同。马的共相,是一切马的本质属性,它不包涵颜色,仅只是“马作为马”。共性不同,“马作为马”与“白马作为白马”不同。所以白马非马。
前面我们说到,辩证法是在对付诡辩论的过程中发展起来的。黑格尔在《小逻辑》中说:“辩证法切不可与单纯的诡辩相混淆。诡辩的本质在于孤立起来看事物,把本身片面的、抽象的规定,认为是可靠的。”(《逻辑学概念的进一步规定和部门划分》)
从辩证法的角度看,“白马非马”割断了个别和一般的关系。白马属于个性,特指白颜色的马;马属于一般,具有各种颜色马的共性。公孙龙区分了它们之间的差别,但是又绝对化了这种差别。白马尽管颜色上不同于其他的马,如公孙龙提到的黄马、黑马,但仍然是马。作为共性的“马”寓于作为个性的“白马”之中。“马”作为一般的范畴,包括各种颜色的马,公孙龙的白马自然也不例外。

杀盗非杀人也”
这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非杀人也”归入“惑于用名以乱名”的诡辩。荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是杀人。

参考资料:http://baike.baidu.com/view/2464.html?wtp=tt#5

本回答被提问者采纳

预料不到的考试的悖论的答案
一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考 这个就是预料不到的考试的悖论.假如到了星期四中午就可以知道是星期五考试了,那麼就可以排除星期五了.既然排除了...

预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星...
而事实情况呢,倘若我们假设老师在周三突然考试,而我们推出这周都不会考试,那么周三考试我们也自然不会提前料到,自然地在满足前提的情况下事情又发生了。这就是著名的“知道者悖论”。

预料不到的考试的悖论
预料不到的考试悖论,一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”有学生想,若到周四时,则知道周五考试,不意外,因此排除。周四在周五被排除后,用同样...

预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星...
这是一个著名的逻辑悖论,称为“考试悖论”。悖论的核心在于老师宣布了考试将在未来的五天内进行,但并未具体指明哪一天。学生试图推断出考试的确切日期,却发现无论假设哪一天,都会陷入矛盾。悖论的出现是因为信息的自我指涉性,即信息本身包含了关于自身的信息,但这个信息是不完整的。在分析这个悖论时...

预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星...
简单地说,这是一个自我指涉的认知悖论。在逻辑上,老师提供些信息,其中有两个命题:1. 考试在这五天之中。2. 考试的时间你推测不出来。实际上这两个命题在推理下不相容,它们构成了自相矛盾的判断。你在假设下推测出考试在任何一天都会被第二个命题否定。学生利用它们得出考试不在这五天的任何...

预料不到的考试的悖论
关于预料不到的考试悖论,一位教师宣布将在下一周的某一天(周一至周五)进行考试,但他补充说,学生只能在考试当天的早上八点得知考试将在下午一点进行。学生们认为,如果到了周四还未宣布考试,那么他们可以推断出考试将在周五,因此排除了周五。同理,周一、周二、周三也被排除。然而,教师最终在周三...

著名的悖论有哪些
芝诺悖论:阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),他永远也追不上这只乌龟.理由如下:他要追上乌龟必须要经过乌龟出发的地方A,但当他追到这个地方的时候,乌龟又向前爬了一段距离,到了B点,他要追上乌龟又必须经过B点,但当他追到B点的时候,乌龟又爬到了C点....

悖论小说流苏全文阅读笔趣阁悖论
16、 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 5. 伽利略悖论:我们都知道整体大于部分。17、由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。18、为什么? 6. 预料不到的考试的悖论:一位老师...

哪里错了,为什么会有悖论?
再推导到-3≤-a≤-1.5,不等号的取值方向就已经变化了,变得与原先相反。再和原先的不等式相加,就不对了。因为取值方向是不同的,已经不能直接加减了,再推导下去,以后各步都是错的。所以,你推导的这个,并不是悖论,而是错误。只有在条件相同的前提下,才可以对不等式进行加减运算。

有一种理论叫悖论,有这样一个例子……
星期四也不可能考,因为到了星期三还没有考试的话,就只能是星期四了,这样的话,也不会是预料不到的.因此星期四考也被排除了.可以用同样的理由推出星期三、星期二、星期一都不可能考试.学生们推出结论后都很高兴,教授的话已经导出矛盾了,轻轻松松地过吧.结果到了下周的星期二,教授宣布考试,...

相似回答