1/(1×2)+1/(2×3)+1/(3×4)+⋯+1/(99×100)

1/(1×2)+1/(2×3)+1/(3×4)+⋯+1/(99×100)
求解答

第1个回答  2009-08-28
原式=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
第2个回答  2009-08-28
=1-1/2+1/2-1/3+1/3-1/4+……+1/99-1/100
=1-1/100
=99/100
(1/(1*2)=1-1/2,1/(2*3)=1/2-1/3,……)本回答被提问者采纳

1\/(1×2)+1\/(2×3)+1\/(3×4)+⋯+1\/(99×100)
原式=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100

1\/1*2+1\/2*3+1\/3*4+.+1\/99*100 答案是什么,具体的方法?
1\/1*2+1\/2*3+1\/3*4+⋯+1\/99*100 原式=(1-1\/2)+(1\/2-1\/3)+……+(1\/99-1\/100)=1-1\/100=99\/100 1\/1*2+1\/2*3+1\/3*4+.+1\/99*100;(-3)的平方*〔(-2\/3)+(-5\/9)〕;(5\/9-5\/6+1\/4)\/(-36) 1\/1*2+1\/2*3+1\/3*4+...+1\/99...

1\/1×2+1\/2×3+1\/3 ×4 ...+1\/99×100=( )
=1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/99-1\/100 =1-1\/100 =99\/100

1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+⋯十1\/(1+2+3+⋯+50)=
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+⋯十1\/(1+2+3+⋯+50)=2\/(2×3)+2\/(3×4)+2\/(4×5)+⋯+2\/(50×51)=2×(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/50-1\/51)=2×(1\/2-1\/51)=1-2\/51 =49\/51 ...

2分之1十6分之1十12分之1十20分之十⋯十90分之1等于多少?
解:原式 =1\/(1x2)+1\/(2x3)+…+1\/(9x10)=(1-1\/2)+(1\/2-1\/3)+…+(1\/9-1\/10)=1+(1\/2-1\/2)+(1\/3-1\/3)+…+(1\/9-1\/9)-1\/10 =1-1\/10 =9\/10

1÷1×2+1÷2×3+1÷3×4+……+1÷2015×2016=2015\/2016
1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+...+1\/(2015*2016)=(1\/1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+...+(1\/2015-1\/2016)=1\/1-1\/2016 =2015\/2016

s=1\/2+2\/3+3\/4+⋯+n\/n+1+,s<=6.7时,求n的最大值+编程Python
定义变量n,用于记录循环的最大值 n = 2 定义变量s,用于记录当前循环中计算出来的倒数和 s = 0 循环遍历从2到6.7的所有数 while s <= 6.7:计算当前数的倒数和 s += 1\/n n += 1 输出n的值 print("n的最大值为:", n)```运行结果为:```n的最大值为: 675 ...

1乘2分之1+2乘3分之1+3乘4分之1+⋯+8乘9分之1+9乘10分之1 怎么做啊...
1乘2分之1+2乘3分之1+3乘4分之1+⋯+8乘9分之1+9乘10分之1 =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/8-1\/9+1\/9-1\/10 =1-1\/10 =9\/10 =0.9

1+2+3+4一直加到100等于多少
1+2+3+4+...+97+98+99+100=(1+100)+(2+99)+(3+98)+...+(50+51)=(1+100)*50=101*50=5050答:1十2十3十4十5十6一直加到100等于5050。

数学题:1×1\/2+1\/2×1\/3+1\/3×1\/4+1\/4×1\/5+1\/5×1\/6+1\/6×1\/7
铡熷纺=1\/(1脳2)+1\/(2脳3)+...+1\/(6脳7)=1-1\/2+1\/2-1\/3+...+1\/6-1\/7=1-1\/7=6\/7

相似回答
大家正在搜