lim[x→∞] (x+1\/x-1)^x 求极限
结果为:e^2 解题过程如下:令y=(x+1\/x-1)^x lny=x[ln(x+1)-ln(x-1)]limlny= limx[ln(x+1)-ln(x-1)]=lim[ln(x+1)-ln(x-1)]\/(1\/x)=lim[1\/(x+1)-1\/(x-1)]\/(-1\/x^2)=lim{2x^2\/(x^2-1)=lim2\/(1-1\/x^2)=2 limlny=2=lnlimy limy=e^2 ...
limx趋于正无穷(x+1\/x-1)x次方 急求,需详细步骤!急!
lim(x→∞)(x+1\/x-1)^x =lim(x→∞)[1+2\/(x-1)]^x =lim(x→∞)[1+2\/(x-1)]^(x-1)*lim(x→∞)[1+2\/(x-1)]=lim(x→∞)[1+2\/(x-1)]^(x-1)=lim(x→∞){[1+2\/(x-1)]^[(x-1)\/2]}^2 =e^2 ...
limx=1\/ x= e^2的极限是多少
lim[x→∞] (x+1\/x-1)^x =e^2。令y=(x+1\/x-1)^x,lny=x[ln(x+1)-ln(x-1)]limlny = limx[ln(x+1)-ln(x-1)]=lim[ln(x+1)-ln(x-1)]\/(1\/x)=lim[1\/(x+1)-1\/(x-1)]\/(-1\/x^2)=lim{2x^2\/(x^2-1)=lim2\/(1-1\/x^2)=2 所以 limlny=2=lnlimy...
求lim(x→∞)[(x+1)\/(x-1)]^x
=lim(x→∞)[1+2\/(x-1)]^x =lim(x→∞)[1+2\/(x-1)]^[(x-1)\/2 *2x\/(x-1)]=lim(x→∞)e^2x\/(x-1)=e²
求一道求极限的高数题,lim(x趋近于无穷)[(x+1)\/(x-1)]∧x
解法一:原式=lim(x->∞){[(1+2\/(x-1))^((x-1)\/2)]^[2x\/(x-1)]} ={lim(x->∞)[(1+2\/(x-1))^((x-1)\/2)]}^{lim(x->∞)[2x\/(x-1)]} =e^{lim(x->∞)[2x\/(x-1)]} (应用重要极限lim(z->∞)[(1+1\/z)^z]=e)=e^{lim(x->∞)[2\/(1-1\/x)]...
limx趋近于∞ (x\/1+x)∧x求极限
分享 新浪微博 QQ空间 举报 收起 sumeragi693 高粉答主 2016-11-28 · 繁杂信息太多,你要学会辨别 知道大有可为答主 回答量:3.8万 采纳率:79% 帮助的人:1.3亿 我也去答题访问个人页 关注 展开全部 原式=lim(x→∞){[1-1\/(1+x)]^[-(1+x)]}^[-x\/(1+x)]=e^(-1) 1 ...
求详细过程x→∞ lim(1+1\/x-1)^x是多少
lim(1+1\/(x-1))^x =lim(1+1\/(x-1))^(x-1)*(1+1\/(x-1))=lim(1+1\/(x-1))^(x-1)lim(1+1\/(x-1))=lim(1+1\/(x-1))^(x-1)(1 + lim1\/(x-1) )=e(1+0)=e
lim[(x+1)\/(x-1)]的x次方怎么求解
}lim[(x-1)\/2]趋近于无穷大{1+1\/[(x-1)\/2]}^[2(x-1)\/2]=lim[(x-1)\/2]趋近于无穷大{1+1\/[(x-1)\/2]}lim[(x-1)\/2]趋近于无穷大{{1+1\/[(x-1)\/2]}^[(x-1)\/2]}^2 =1×e^2=e^2(^表示它后面数的“...次方”)用到limx趋近于无穷大(1+1\/x)^x=e ...
lim(x+1\/x-1)的x次方,当x趋近于∞时,等于多少
lim [(x+1)\/(x-1)]^x x→+∞ =lim {[1+ 2\/(x-1)]^[(x-1)\/2]}²·[1+ 2\/(x-1)]x→+∞ =e²·(1+0)=e²用到的公式:lim (1+ 1\/x)^x=e x→∞
limx→∞(x\/ x+1)的极限是多少
ln y = lim x →∞ (ln (x\/(x+1)))\/(1\/x)化简得:ln y = lim x →∞ -x\/(x+1)ln y = -1 y= e^(-1)=1\/e 极限思想 极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。所谓极限的思想,是指“用极限...