在线性规划中,什么是最优解?什么是最优解不唯一?最优解是让z取得最大值的点的坐标吗?

如题所述

最优解是使得目标函数取到最大值或最小值(视情况而定)的解。

在高中阶段目标函数一般是二元函数z(x,y)。假设可行域(即满足限定条件的x,y范围,可表示为平面直角坐标系内的一个区域)为X。

假设目标函数z=ax+by是一线性函数,在坐标系内图像为一条直线,直线平移时z值发生变化。若X有一条外侧的边平行于目标函数的直线,则直线与该边重合时,边上所有点都是最优解,所以最优解可能不唯一。

最优解可以理解为让z取得最值的点的坐标。

扩展资料:

使目标函数取最小值的可行解称为极小解,使其取最大值的可行解称为极大解。极小解或极大解均称为最优解。相应地,目标函数的最小值或最大值称为最优值。有时,也将最优解和最优值一起称为相应数学规划问题的最优解。 

线性规划的最优解不一定只有一个,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。

函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。

另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。

参考资料来源:百度百科--基本最优解

参考资料来源:百度百科--最优解

温馨提示:内容为网友见解,仅供参考
第1个回答  2017-07-27
使某线性规划的目标函数达到最优值(最大值或最小值)的任一可行解,都称为该线性规划的一个最优解。
线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。

线性规划(简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。

解决线性规划问题的步骤:
①列出约束条件及目标函数。
②画出约束条件所表示的可行域。
③在可行域内求目标函数的最优解及最优值。
线性规划所建立的数学模型具有以下特点:
①每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。
②目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。
③约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
第2个回答  2017-06-22
最优解是使得目标函数取到最大值或最小值(视情况而定)的解。
在高中阶段目标函数一般是二元函数z(x,y)。假设可行域(即满足限定条件的x,y范围,可表示为平面直角坐标系内的一个区域)为X。现假设目标函数z=ax+by是一线性函数,在坐标系内图像为一条直线,直线平移时z值发生变化。若X有一条外侧的边平行于目标函数的直线,则直线与该边重合时,边上所有点都是最优解,所以最优解可能不唯一。
最优解可以理解为让z取得最值的点的坐标。
第3个回答  2017-07-20
在线性规划中,使得目标函数取得最大值或者最小值的可行解就是最优解;当最优解不止一个时,称为最优解不唯一;最优解就是让z取得最大值或者最小值的点的坐标(可行解)。
第4个回答  2015-05-27
最优解是让z取得最大值的坐标 不唯一就是有无数个 做线性规划题要画图 画图在再划比划就知道了本回答被网友采纳

在线性规划中,什么是最优解?什么是最优解不唯一?最优解是让z取得最大...
最优解是使得目标函数取到最大值或最小值(视情况而定)的解。在高中阶段目标函数一般是二元函数z(x,y)。假设可行域(即满足限定条件的x,y范围,可表示为平面直角坐标系内的一个区域)为X。假设目标函数z=ax+by是一线性函数,在坐标系内图像为一条直线,直线平移时z值发生变化。若X有一条外侧...

什么叫做最优解
最优解:使某线性规划的目标函数大达到最优值的任一可行解,都称为该线性规划的一个最优解。线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学...

最优解是什么意思
最优解可以理解为使某线性规划的目标函数大达到最优值的任一可行解的意思。1、线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学。

线性规划中最优解不惟一是什么意思
就是只满足条件的可以取到最值的学x,y个数不知一个,一般会有无数个,也有的有有限个解。条件是直线和定义域图形在取得最值时不只有一个交点。

什么叫做最优解?
最优解定义为不牺牲任何总目标和各分目标的条件下,技术上能够达到的最好的解。它表示所有的总目标和分目标都可以达到的理想的解。而实际上这样的解是很少存在的。工程问题固有的内在因素总是包含各种矛盾的,由于科学水平的限制,很多设计因素和系统的约束还不是很了解;许多判别准则。例如: 社会上的...

什么是线性规划中的最优解?
可行解是满足约束条件的解,基本解对应基向量的非基变量为零,基解不一定为可行解,可行解也不一定为基解,既是可行解又是基本解的解是基本可行解,最优解是基本可行解中使目标函数达到最优的解。在线性规划问题中,满足非负约束的基本解称为基本可行解或基本可行解。如果线性规划问题存在可行解,则...

线性规划最优解是什么意思,,,高三理数
线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。例如:已知变量x,y满足约束条件1.y≤3;2.x+y≥1;3.x-y≤1,则z=2x-y的最优解为(4,3)或(-2,3)---来源360百科

简单的线性规划的最优解是什么
使某线性规划的目标函数大达到最优值(最大值或最小值)的任一可行解,都称为该线性规划的一个最优解。线性规划的最优解不一定唯一,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。所以最优解到底是最大值还是最小值要根据题目判断。

线性规划有几种解,分别是什么
四种,分别是: 唯一最优解、多重最优解、无界解、和无可行解。1.唯一最优解。判断条件:单纯形最终表中所有非基变量的检验数均小于零.2.多重最优解:判断条件:单纯形最终表中存在至少一个非基变量的检验数等于零。3.无界解。判断条件:单纯形法迭代中某一变量的检验数大于零,同时它所在系数矩阵...

数学线性规划,为什么目标函数只有与可行域边界平行时才有无穷个最优解...
此时的最优解是固定唯一的(因为蓝色直线此时与三角形的交点只有一个,就是最右边的顶点)但如果直线是红色那条,图中的位置就是z取最大值的情况,此时最优解有无穷多个,因为红色直线与三角形一边重合,意味着三角形那条边上的所有点都是最优解 ...

相似回答