急求一数学简算题解法:(1+1/2)(1-1/2)(1+1/3)(1-1/3)……(1+1/99)(1-1/99)

如题所述

化成这样 3/2 1/2 4/3 2/3 5/4

然后看有什么规律 基本上上下可以抵消 最后只剩下几个数
3 1 4 2 5 3 6 4 ... 100 98 1 100 100

---------------------------------- ------------ ==> --------- ==>----------

2 2 3 3 4 4 5 5..... 99 99 2 99 198
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-05-12
=1+1/2+1-1/2+1+1/3+1-1/3.......1+1/99+1-1/99
=1乘196
=196
第2个回答  2010-05-12
把括号里面的式子算出来,得到一个分数,然后把这些分数放在一起相乘,注意观察分数的分子和分母,可以发现,这些分子和分母大多数都能够消掉,我算了一下,结果应该是50/99.
第3个回答  2010-05-12
将题目分成两部分来看.
(1+1/2)(1-1/2)(1+1/3)(1-1/3)……(1+1/99)(1-1/99)
3/2*1/2*4/3*2/3....*100/99*98/99

奇数项相乘,约分后为100/2
偶数项相乘,约分后为1/99

100/2*1/99=50/99

...1-1\/2)(1+1\/3)(1-1\/3)……(1+1\/99)(1-1\/99)
化成这样 3\/2 1\/2 4\/3 2\/3 5\/4 然后看有什么规律 基本上上下可以抵消 最后只剩下几个数 3 1 4 2 5 3 6 4 ... 100 98 1 100 100 --- --- ==> --- ==>--- 2 2 3 3 4 4 5 5...

(1+1\/2)*(1-1\/2)*(1+1\/3)*(1-1\/3)*.……(1+1\/99)*(1-1\/99)的简便...
=100\/2*1\/99 =50\/99

(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)...(1+1\/99)(1-1\/99)简便算法
所有项都乘起来,就剩下第一项的1\/2和最后一项(n+1)\/n 那么 a2a3...an=(n+1)\/2n 具体数字你再具体代入计算就好了,,这里n=99,那么 (1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)...(1+1\/99)(1-1\/99)=(99+1)\/99*2 =50\/99 ...

...1+1\/2)*(1-1\/2)*(1+1\/3)*(1-1\/3)*...*(1+1\/99)*(1-1\/99)_百度...
先把括号里的约分得到:3\/2*1\/2*4\/3*2\/3...*97\/98*99\/98*100\/99*98\/99 之后会发现中间所有之积得1,最后剩个1\/2和100\/99相乘 结果就是,你知道的50\/99

(1+1\/2)*(1-1\/2)*(1+1\/3)*(1-1\/3)*...*(1+1\/99)*(1-1\/99) 怎样简便计算...
(1+1\/2)×(1﹣1\/3)=1 (1+1\/3)×(1﹣1\/4)=1 ……(1+1\/98)×(1﹣1\/99)=1 最后就剩(1﹣1\/2)和(1+1\/99)相乘 所以原式=50\/99

...1+1\/2)*(1-1\/2)*(1+1\/3)*(1-1\/3)*...*(1+1\/99)*(1-1\/99)*(1+...
(1+1\/2)*(1-1\/2)*(1+1\/3)*(1-1\/3)*...*(1+1\/99)*(1-1\/99)*(1+1\/100)*(1-1\/100)= 3\/2 * 1\/2 *4\/3 *2\/3 *5\/4 *3\/4 *……* 100\/99 * 98\/99 *101\/100 *99\/100 =1\/2*(3\/2*2\/3)*(4\/3*3\/4)*(5\/4*4\/5)……*(100\/99*99\/100)*101\/...

(1+1\/2)x(1-1\/2)x(1+1\/3)x(1-1\/3)x……x(1+1\/99)x(1-1\/
对所求代数式变形,将对应的减法与加法交换位置 求出每个因式的值,消去互为倒数的项 结果=50\/99 过程如下图:

计算:(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)(1+1\/4)(1-1\/4)...(1+1\/2006)(1...
(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)(1+1\/4)(1-1\/4)...(1+1\/2006)(1-1\/2006)=(1+1\/2)(1+1\/3)(1+1\/4)...(1+1\/2006)(1-1\/2)(1-1\/3)(1-1\/4)...(1-1\/2006)=3\/2*4\/3*5\/4*6\/5*...*2007\/2006*1\/2*2\/3*3\/4*...*2005...

(1-1\/2) (1+1\/2) (1-1\/3) (1+1\/3)...(1-1\/100) (1+1\/00) 怎么做啊...
(1-1\/2) (1+1\/2) (1-1\/3) (1+1\/3)...(1-1\/100) (1+1\/00)=(1-1\/2) (1-1\/3) ...(1-1\/100) (1+1\/2) (1+1\/3)... (1+1\/00)=1\/2×2\/3×……×99\/100×3\/2×4\/3×……×101\/100 =1\/100×101\/2 =101\/200 ...

如何巧算(1+1\/2)×(1-1\/2)×(1+1\/3)×(1-1\/3)...(1+1\/99)×?
(1+1\/2)×(1-1\/2)×(1+1\/3)×(1-1\/3)...(1+1\/99)=【(1+1\/2)×(1+1\/3)×(1+1\/4)...(1+1\/99)】×【(1-1\/2)×(1-1\/3)×(1-1\/4)...(1-1\/98)】=【3\/2×4\/3×5\/4×...100\/99】×【1\/2×2\/3×3\/4×4\/5×...×97\/98】=...

相似回答
大家正在搜