哥赫巴德猜想的具体内容及其证明过程

如题所述

数学王冠上的明珠——哥德巴赫猜想
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:

一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。

这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。

1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。

由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。


温馨提示:内容为网友见解,仅供参考
第1个回答  2021-04-21
哥德巴赫猜想证明 :任何一个大于2的偶数都等于两个质数的和,除了2以外的所有质数都是奇数,4=2+2,6=3+3,8=3+5...... 所以说哥赫巴德猜想是成立的!!!
第2个回答  2014-08-02
一个大于4的偶数等两个质数的和追问

废话,这个我也知道,详细的!!!!

追答

废话,这是道还未解决的世界难题

你要过程,

我真的很为难

陈景润只证了一半,就写了200多页

或许是

我怎莫能把我的科研成果给你呢?

哥赫巴德猜想的具体内容及其证明过程
数学王冠上的明珠——哥德巴赫猜想 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想: 一、任何不小于6的偶数,都是两个奇质数之和; 二、任何不小于9的奇数,都是三个奇质数之和。 这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想...

关于歌德巴赫猜想的证明
哥德巴赫猜想:(Goldbach Conjecture)德国数学研究者Goldbach发现,每个不小于6的偶数,可以表示为两个奇素数之和。加强版:每个不小于8的偶数,可表示为两个不同的奇素数之和。这个命题有很多人声称进行了论证。据我所知,没有一个论证过程,被专家团队认可,被较多的人理解与支持。一个论证材料举例:...

历史上最恐怖的数学题
巴德哥赫猜想大约在250年前,德国数字家哥德巴赫发现了这样一个现象:任何大于5的整数都可以表示为3个质数的和。他验证了许多数字,这个结论都是正确的。但他却找不到任何办法从理论上彻底证明它,于是他在1742年6月7日写信和当时在柏林科学院工作的著名数学家欧拉请教。欧拉认真地思考了这个问题。他首先...

哥赫巴德猜想是什么
这张表可以无限延长,而每一次延长都使欧拉对肯定哥德巴赫的猜想增加了信心.而且他发现证明这个问题实际上应该分成两部分.即证明所有大于2的偶数总能写成2个质数之和,所有大于7的奇数总能写成3个质数之和.当他最终坚信这一结论是真理的时候,就在6月30日复信给哥德巴赫.信中说:"任何大于2的偶数都是...

歌德巴赫的猜想 是什么啊???
歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)关于歌德巴赫...

什么是巴德赫猜想
但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。[1]因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的...

歌德巴赫提出了什么猜想?
这就是歌德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉都不能证明,这引起了许多数学家的注意。至今,许多数学家仍在努力攻克它,但都没有成功。曾经有人做了具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7……有人对33×10^8以内且...

如何证明哥赫巴德猜想?
哥赫巴德猜想是一个数学问题,它的陈述是:任意大于等于2的整数,都可以表示为三个质数之和。虽然已经有大量的计算机验证结果,但至今该猜想还没有得到严谨证明。如果您想要尝试证明哥赫巴德猜想,可以考虑以下两个方向:1. 利用现有的数学工具 目前已有许多数学家尝试证明哥赫巴德猜想,他们使用了各种各样的...

哥赫巴德猜想是问什么
是问 任何不小于6的偶数可以表示为两个素数的和 为什么会成立,用什么推论出这是正确的

任何大于或等于6的偶数,都可以表示成两个奇素数之和的证明
哥德巴赫猜想主体解大于1,等于哥德巴赫猜想的解大于1。 解大于1,证明哥德巴赫猜想成立。 青岛 王新宇 2005.1.15 ---简介哥德巴赫猜想解的公式 ```哥德巴赫猜想就是:每个大于4的偶数都是2个素数之和。 例如:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,……。 ```偶数的对称素数就是:“不...

相似回答