哥赫巴德猜想是什么

如题所述

任何大于5的整数都可以表示为3个质数的和。

大约在250年前,德国数字家哥德巴赫发现了这样一个现象:任何大于5的整数都可以表示为3个质数的和。他验证了许多数字,这个结论都是正确的。但他却找不到任何办法从理论上彻底证明它,于是他在1742年6月7日写信和当时在柏林科学院工作的著名数学家欧拉请教。欧拉认真地思考了这个问题。他首先逐个核对了一张长长的数字表:

6=2+2+2=3+3
8=2+3+3=3+5
9=3+3+3=2+7
10=2+3+5=5+5
11=5+3+3
12=5+5+2=5+7
99=89+7+3
100=11+17+71=97+3
101=97+2+2
102=97+2+3=97+5
……
这张表可以无限延长,而每一次延长都使欧拉对肯定哥德巴赫的猜想增加了信心。而且他发现证明这个问题实际上应该分成两部分。即证明所有大于2的偶数总能写成2个质数之和,所有大于7的奇数总能写成3个质数之和。当他最终坚信这一结论是真理的时候,就在6月30日复信给哥德巴赫。信中说:"任何大于2的偶数都是两个质数的和,虽然我还不能证明它,但我确信无疑这是完全正确的定理"由于欧拉是颇负盛名的数学家、科学家,所以他的信心吸引和鼓舞无数科学家试图证明它,但直到19世纪末也没有取得任何进展。这一看似简单实则困难无比的数论问题长期困扰着数学界。谁能证明它谁就登上了数学王国中一座高耸奇异的山峰。因此有人把它比作"数学皇冠上的一颗明珠"。

实际上早已有人对大量的数字进行了验证,对偶数的验证已达到1.3亿个以上,还没有发现任何反例。那么为什么还不能对这个问题下结论呢?这是因为自然数有无限多个,不论验证了多少个数,也不能说下一个数必然如此。数学的严密和精确对任何一个定理都要给出科学的证明。所以"哥德巴赫猜想"几百年来一直未能变成定理,这也正是它以"猜想"身份闻名天下的原因。

要证明这个问题有几种不同办法,其中之一是证明某数为两数之和,其中第一个数的质因数不超过a
个,第二数的质因数不超过b个。这个命题称为(a+b)。最终要达到的目标是证明(a+b)为(1+1)。

1920年,挪威数学家布朗教授用古老的筛选法证明了任何一个大于2的偶数都能表示为9个质数的乘积与另外9个质数乘积的和,即证明了(a+b)为(9+9)。
1924年,德国数学家证明了(7+7); 1932年,英国数学家证明了(6+6);
1937年,苏联数学家维诺格拉多夫证明了充分大的奇数可以表示为3个奇质数之和,这使欧拉设想中的奇数部分有了结论,剩下的只有偶数部分的命题了。

1938年,我国数学家华罗庚证明了几乎所有偶数都可以表示为一个质数和另一个质数的方幂之和。
1938年到1956年,苏联数学家又相继证明了(5+5),(4+4),(3+3)。
1957年,我国数学家王元证明了(2+3);
1962年,我国数学家潘承洞与苏联数学家巴尔巴恩各自独立证明了(1+5);
1963年,潘承洞、王元和巴尔巴恩又都证明了(1+4)。
1965年,几位数学家同时证明了(1+3)。
1966年,我国青年数学家陈景润在对筛选法进行了重要改进之后,终于证明了(1+2)。他的证明震惊中外,被誉为"推动了群山,"并被命名为"陈氏定理"。他证明了如下的结论:任何一个充分大的偶数,都可以表示成两个数之和,其中一个数是质数,别一个数或者是质数,或者是两个质数的乘积。

现在的证明距离最后的结果就差一步了。而这一步却无比艰难。30多年过去了,还没有能迈出这一步。许多科学家认为,要证明(1+1)以往的路走不通了,必须要创造新方法。当"陈氏定理"公之于众的时候,许多业余数学爱好者也跃跃欲试,想要摘取"皇冠上的明珠"。然而科学不是儿戏,不存在任何捷径。只有那些有深厚的科学功底,"在崎岖小路的攀登上不畏劳苦的人,才有希望达到光辉的顶点。

"哥德巴赫猜想"这颗明珠还在闪闪发光地向数学家们招手,她希望数学家们能够早一天采摘到她。
温馨提示:内容为网友见解,仅供参考
无其他回答

哥德巴赫猜想是什么
1、即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。2、哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也...

哥德巴赫猜想是什么 哥德巴赫猜想介绍
1、哥德巴赫猜想,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”,是一个著名的数学问题。它指出,任何大于2的偶数都可以表示为两个素数之和。2、哥德巴赫在1742年给欧拉的信中首次提出了这个猜想。他提出,每一个大于2的整数都可以分解为三个质数之和。尽管哥德巴赫自己未能证明这一猜想,他...

哥德巴赫猜想是什么?
从关于偶数的哥德巴赫猜想,可推出: 任一大于7的奇数都可写成三个质数之和 的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇...

什么是“哥德巴赫猜想”
“哥德巴赫猜想”是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陈述为:“任一大于2的偶数,都可表示成两个素数之和。“【将一个偶数用两个质数之和表示的方法,等于同一横线上,蓝线和...

什么是哥德巴赫猜想?
哥德巴赫猜想是数论中的一个著名未解决问题,由德国数学家克里斯蒂安·哥德巴赫于1742年提出。该猜想有两个等价的表述形式:强哥德巴赫猜想:任一大于2的偶数都可以表示为两个素数之和。弱哥德巴赫猜想:任一大于7的奇数都可以表示为三个素数之和。

哥德八赫猜想是什么、
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在...

什么是哥德巴赫猜想?
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在...

哥德巴赫猜想是什么
哥德巴赫猜想可表述为:a) 任一不小于6之偶数,都可以表示成两个奇质数之和;b) 任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。把命题"任何一...

哥德巴赫猜想是什么
哥德巴赫猜想是指任何大于2的偶数都可以表示为两个质数之和。哥德巴赫猜想是数学领域中的一个著名未解问题,它源于18世纪德国数学家哥德巴赫的一封信。在信中,他向数学家欧拉提出了这个问题,即是否每个大于2的偶数都可以写成两个质数之和。尽管这个问题看似简单,但数学家们一直未能找到一个普遍适用的...

哥德巴赫猜想是什么?
1742年哥德巴赫提出了猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。朋友欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题...

相似回答