X,Y服从正态分布,X,Y的相关系数为ρ,a、b满足a+b=1且1≥a,b≥0,如何确定a, b使S=aX+bY的方差最小

Assume that random variables 𝑋 and𝑌 are normally distributed.
𝑋~𝑁(𝜇𝑋, 𝜎𝑋2) 𝑌~𝑁(𝜇𝑌, 𝜎𝑌2)
The correlation between 𝑋and𝑌 is 𝜌. How can you choose constants 𝑎 and 𝑏 such
that you minimize the variance of the random variable sum 𝑆=𝑎𝑋+𝑏𝑌 under the
constraints that a+𝑏=1, 0≤𝑎≤1 𝑎𝑛𝑑 0≤𝑏≤1 ?


∵EX=EY=μ,DX=DY=σ2
∴X~N(μ,σ2),Y~N(μ,σ2),即X与Y具有相同的正态分布;
二维正态分布中,ρ为相关系数,实际上有如下性质:
对于二维正态分布,ρ=0?X与Y相互独立?X与Y不相关.
故答案选:A.


温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答