已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列?

如题所述

第1个回答  2022-11-13
1.
bn=(3an-2)/(an-1)
an=(bn-2)/(bn-3)
a(n+1)=[b(n+1)-2]/[b(n+1)-3]
a(n+1)=(4an-2)/(3an-1)
3a(n+1)an-a(n+1)=4an-2
3{[b(n+1)-2]/[b(n+1)-3]}[(bn-2)/(bn-3)]-[b(n+1)-2]/[b(n+1)-3]=4(bn-2)/(bn-3)-2
3[b(n+1)-2](bn-2)-[b(n+1)-2](bn-3)=4(bn-2)[b(n+1)-3]-2[b(n+1)-3](bn-3)
2b(n+1)bn-3b(n+1)-4bn+6=2b(n+1)bn-2b(n+1)-6bn+6
b(n+1)=2bn
bn=b1*2^(n-1)
b1=(3a1-2)/(a1-1)=4
bn=b1*2^(n-1)=2^(n+1)为比数列;
2.
bn=(3an-2)/(an-1)=2^(n+1)
3an-2=[2^(n+1)]an-2^(n+1)
[3-2^(n+1)]an=2-2^(n+1)
an=[2-2^(n+1)]/[3-2^(n+1)],1,已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列,并求{an}的通项公式

已知数列{an}中,a1=2,an+1=4an-2\/3an-1 bn=3an-2\/an-1 求证;数列{bn}...
an=[2-2^(n+1)]\/[3-2^(n+1)],1,已知数列{an}中,a1=2,an+1=4an-2\/3an-1 bn=3an-2\/an-1 求证;数列{bn}是等比数列,并求{an}的通项公式

已知数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,已知数列bn=an-n,证明:数...
解答:证明:an+1=4an-3n+1an+1-(n+1)=4(an-n),a1-1=1{an-n}是以1为首项,以4为公比的等比数列,an?nan?1?(n?1)=4bn=an-n,bnbn?1=4{bn}是以1为首项,以4为公比的等比数列

已知在数列{an}中,a1=2,an+1=4an-3n+1,n∈N.(1)证明:...
(1)证明:∵在数列{an}中,a1=2,an+1=4an-3n+1,∴an+1-(n+1)=4(an-n),∴ an+1-(n+1)an-n =4,∴数列{an-n}是等比数列.(2)解:∵a1=2,a1-1=1,an+1-(n+1)an-n =4,∴an-n=1×4n-1,∴an=n+4n-1.∴Sn= n(n+1)2 + 1-4n 1-4 = n(n+1...

已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是...
a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an [a(n+2)-a(n+1)]\/[a(n+1)-2an]=2 ∴数列{an+1-an}是等比数列 a(n+1)-an=(a2-a1)q^(n-1)=(4-(-1))2^(n-1)=5*2^(n-1)an-a(n-1)=5*2^(n-2)...a2-a1=(4-(-1))=5=5*2^0 相加得 a...

在数列{an}中,已知a1=2,a2=4,且对任意n∈N+都有an+2=3an+1-2an。 (
2、数列{bn}b1=a2-a1=4-2=2首项3公比等比数列 所bn=2*3^(n-1)即a(n+1)-an =2*3^(n-1)即a2-a1=2 a3-a2=2*3 a4-a3=2*3^2 ...an-a(n-1)=2*3^(n-2)各式累加 an-a1=2(1+3+3^2+...+3^(n-2))an-a1=3^(n-1)an=3^(n-1)+2 数列{an}通项公式an=3...

数学题:在数列{an}中,a1=2,an+1=4an-3n+1,求an
a(n+1)=4an-3n+1a(n)=4a(n-1)-3n+4做差a(n+1)-an=4(an-an-1)-3令an-an-1=bnb(n+1)=4bn--3b(n+1)+t=4(bn+t)得t=-1b(n+1)-1=4(bn-1)b(n+1)-1\/bn-1=4a1=2 a2=6 b1=4 b1-1=3bn=3*4^(n-1)+1an-an-1=3*4^(n-1)+1a3-a...

已知数列{an}中,a1=4,a2=6,且an+1=4an-3an-1(n≥2),设bn=an+1-an...
(1)证明:∵an+1=4an-3an-1(n≥2),∴an+1-an=3(an-an-1),∵bn=an+1-an,∴bn=3bn-1(n≥2),∵b1=a2-a1=2∴数列{bn}是以2为首项,3为公比的等比数列,通项公式为bn=2×3n-1;(2)解:由(1)知,an=a1+(a2-a1)+…+(an-an-1)=4+2+…+2×3n-1=...

已知数列{An}满足A1=2,An+1=2-1\/An,n=1,2,3,4,..
= (an -1)\/an 1\/[a(n+1) -1] = an\/(an -1)= 1 + 1\/(an -1)1\/[a(n+1) -1] - 1\/(an -1) =1 {1\/(an -1) } 是等差数列, d=1 1\/(an -1) - 1\/(a1 -1)= n-1 1\/(an -1) = n an = 1\/n +1 = (n+1)\/n (2)a(i+1)\/ai = i(i+2)\/(i+...

数列{an}中,a1=1,a2=2.数列{bn}满足bn=an+1+(-1)na...
解:(1)∵数列{an}是等差数列,a1=1,a2=2,∴an=n,∴bn=an+1+(-1)nan =(n+1)+(-1)nn,∴数列{bn}的前6项和S6=(2-1)+(3+2)+(4-3)+(5+4)+(6-5)+(7+6)=30.(2)∵数列{bn}是公差为2的等差数列,b1=a2-a1=1,∴bn=2n-1.∵bn=an+1+(-1...

...=1\/an一1,(n属于自然数). (1)证明:数列{bn}是等比数...
(1)由a<n+1>(2an十1)=3an,得 1\/a<n+1>=2\/3+(1\/3)\/an,变为1\/a<n+1>-1=(1\/3)(1\/an-1),即b<n+1>=(1\/3)bn,b1=1\/a1-1=1\/3,∴数列{bn}是等比数列,bn=1\/3^n=1\/an-1,(2)Cn=n(1+1\/3^n)=n+n\/3^n,设Tn=1\/3+2\/3^2+……+n\/3^n,则 (1\/3)Tn...

相似回答
大家正在搜