已知在数列{an}中,a1=2,an+1=4an-3n+1,n∈N.(1)证明:...

已知在数列{an}中,a1=2,an+1=4an-3n+1,n∈N. (1)证明:数列{an-n}是等比数列; (2)求数列{an}的通项式及其前n项和Sn.

第1个回答  2019-12-02
(1)证明:∵在数列{an}中,a1=2,an+1=4an-3n+1,
∴an+1-(n+1)=4(an-n),

an+1-(n+1)
an-n
=4,
∴数列{an-n}是等比数列.
(2)解:∵a1=2,a1-1=1,
an+1-(n+1)
an-n
=4,
∴an-n=1×4n-1,
∴an=n+4n-1.
∴Sn=
n(n+1)
2
+
1-4n
1-4
=
n(n+1)
2
+
4n-1
3

已知在数列{an}中,a1=2,an+1=4an-3n+1,n∈N.(1)证明:...
an+1-(n+1)an-n =4,∴数列{an-n}是等比数列.(2)解:∵a1=2,a1-1=1,an+1-(n+1)an-n =4,∴an-n=1×4n-1,∴an=n+4n-1.∴Sn= n(n+1)2 + 1-4n 1-4 = n(n+1)2 + 4n-1 3 .

在数列中,a1=2,an+1=4an-3n+1,n∈N*. (1)证明数列是等比...
(1)证明:由题设an+1=4an-3n+1,得 an+1-(n+1)=4(an-n),n∈N+.又a1-1=1,所以数列是首项为1,且公比为4的等比数列.(2)由(1)可知an-n=4n-1,于是数列的通项公式为 an=4n-1+n.所以数列的前n项和Sn=+.(3)证明:对任意的n∈N+,Sn+1-4Sn =+-4...

已知数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,已知数列bn=an-n,证明:数...
解答:证明:an+1=4an-3n+1an+1-(n+1)=4(an-n),a1-1=1{an-n}是以1为首项,以4为公比的等比数列,an?nan?1?(n?1)=4bn=an-n,bnbn?1=4{bn}是以1为首项,以4为公比的等比数列

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(Ⅰ)求证:{...
(Ⅰ)证明:由题设得an+1=4an-3n+1,则an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n.(Ⅲ)解:由(Ⅱ)得,an=4n-1+n,所以数列{an}的前n项和...

在数列{an}中,a1=2,an+1=4an-3N+1(1)证明数列{an-N}是等比数列;(2)求...
a[n+1]-(n+1)=4a[n]-3n+1-(n+1)=4a[n]-4n=4(a[n]-n)所以a[n+1]-(n+1)\/(a[n]-n)=4 设bn=an-n,所以bn是等比数列,b1=1,q=4 Sbn=(4^n-1)\/3 San=Sbn-(1+2+3...+n)=(4^n-1)\/3-(1+n)*n\/2 =(4^n-1)\/3-(n+n^2)\/2 ...

在数列{an}中,a1=2,a(n+1)=4an-3n+1. (1)证明{an-n}是等比数列 (2)求...
=4 所以{an-n}是以a1-1=1为首相q=4为公比的等比数列 an-n=1*4^(n-1)=4^(n-1)即证{an-n}是等比数列 an=4^(n-1)+n Sn=a1+a2+...+an =4^0+4^1+4^2+...+4^(n-1)+(1+2+...+n)=1*(1+4^n)\/(1-4)+n(n+1)\/2 =-(1+4^n)\/3+n(n+1)\/2 ...

数列{an}中,a1=2,an+1=4an-3n+1,求数列Sn,证明不等式Sn+1<=4Sn,对任...
a(n+1) = 4a(n) - 3n + 1,a(n+1) - (n+1) = 4a(n) - 4n = 4[a(n) - n],{a(n) - n}是首项为a(1)-1=1,公比为4的等比数列 a(n)-n=4^(n-1),a(n) = n + 4^(n-1), n = 1,2,..S(n) = a(1) + a(2) + ... + a(n)= 1 + 1 + 2 +...

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,(Ⅰ)求数列{an}的通项公式...
(Ⅰ)由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*又a1-1=1≠0∴an+1?(n+1)an?n=4…(3分)∴数列{an-n}是首项为1,且公比为4的等比数列∴an-n=4n-1即an=4n-1+n(n∈N*)…(4分)(Ⅱ)由(Ⅰ)知bn=n(an-n)=n?4n-1…(5分)∴Sn=1?40+...

在数列{an}中,a1=2,a n+1=4an-3n+1,n∈正整数
∴{An-n}是等比数列 (2)An-n=4^(n-1)*(A1-1)=4^(n-1)∴An=n+4^(n-1)Sn=A1+A2+A3+……+An =1+4^0+2+4^1+3+4^2+……+n+4^(n-1)=(1+2+3+……+n)+(1+4+4^2+……+4^(n-1))=n(n+1)\/2+(1-4^n)\/(1-4)=1\/3*4^n+1\/2*n^2+1\/2*n-1\/3...

在数列{An}中,A1=2,A(n+1)=4An-3n+1,n∈N*.
1.a(n+1)=4an-3n+1 a(n+1)-(n+1)=4an-3n+1-(n+1) a(n+1)-(n+1)=4(an-n) [a(n+1)-(n+1)]\/[(an-n)]=4 数列a(n)-n是公比为4的等比数列

相似回答