极限问题解题?

如题所述

假设分子上有两个项,使用等价代换时,必须同时代换。
解决极限的方法如下:
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!
5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)
11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。
12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
15、单调有界的性质,对付递推数列时候使用证明单调性!
16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!追问

温馨提示:内容为网友见解,仅供参考
无其他回答

在解决极限题时,有哪些常用的解题方法?
解决极限题时,常用的解题方法有:1.直接代入法:将极限中的自变量值代入函数中进行计算。2.夹*定理:当函数在两个其他函数之间夹着的时候,可以通过夹*定理来求解极限。3.等价无穷小替换法:将极限中的无穷小量用等价的无穷小量来代替,从而简化计算。4.洛必达法则:当一个函数的极限形式为"0\/0"...

在处理极限问题时,可以优先采用哪些解题方法?
在处理极限问题时,可以优先采用以下解题方法:1.直接代入法:将极限表达式中的变量直接代入极限值,判断是否等于该极限值。如果等于,则说明该极限存在;如果不等,则说明该极限不存在。2.夹逼定理:当一个函数在某一点附近的值被另外两个函数所夹住时,可以通过比较这两个函数在该点的极限来确定目标函数...

如何利用极限的思想解题?
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。极限思想是微积分的基本思想,是数学分析中的一系列重...

数学极限题目的解题思路有哪些?
解决数学极限题目的思路主要有以下几种:1.直接代入法:如果一个函数在某一点的极限可以直接计算出来,那么就直接代入求解。这是最简单也是最直接的方法。2.夹逼定理:如果一个函数在某一点附近的两个函数的极限都等于同一个数,那么这个函数在这一点的极限也等于这个数。这种方法适用于求解一些复杂的极限...

如何运用极限的知识解题?
当有一个极限本身是不存在的,则不能用四则运算法则。极限的四则运算公式 1、lim(f(x)+g(x))=limf(x)+limg(x);2、lim(f(x)-g(x))=limf(x)-limg(x);3、lim(f(x)*g(x))=limf(x)*limg(x);4、lim(f(x)\/g(x))=limf(x)\/limg(x),limg(x)不等于0;5、lim(f(...

数学极限问题如何分析?
8.总结规律:在解决一系列类似的极限问题时,我们需要总结规律,归纳出通用的求解方法。这样,在遇到新的问题时,我们可以迅速找到解决方法。总之,分析数学极限问题需要灵活运用各种方法和技巧,通过化简表达式、利用已知性质、判断极限存在性等方式,逐步求解。同时,多做练习、总结规律,提高自己的解题能力。

极限问题解题?
必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0...

在解决极限题目时,需要使用哪些知识和技巧?
以简化问题并找到极限存在的条件。9. 综合运用:在实际解题中,需要综合运用上述知识和技巧,根据具体问题的特点选择合适的方法和策略。总之,解决极限题目需要对极限的定义、性质和计算方法有深入的理解,同时还需要灵活运用相关的数学知识和技巧。通过不断的练习和思考,可以提高解决极限问题的能力和水平。

高数极限难题的解题技巧有什么?
利用已知极限:在解决极限问题时,我们可以充分利用已知的极限公式和性质,如e^x的极限、三角函数的极限、指数函数的极限等。这些已知极限可以帮助我们快速找到解题思路。数值逼近法:对于一些难以直接求解的极限问题,我们可以尝试使用数值方法来逼近极限值。例如,可以使用计算机编程来计算函数在某一点的近似值...

极限是什么意思?解题过程是怎么样的?
解题过程如下图:“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于...

相似回答