1*2+2*3+3*4+...n*(n+1)= 要过程
=1(1+1)+2(2+1)+3(3+1)+···+n(n+1)=1²+1+2²+2+3²+3+···+n²+n =(1+2+3+···+n)+(1²+2²+3²+···n²)=(1+n)n\/2+n(n+1)(2n+1)\/6 =n(n+1)\/2[1+(2n+1)\/3]=n(n+1)(n+2)\/3 注:此...
1*2+2*3+3*4+…+ n*(n+1)=
因为 k*(k+1) = k² + k 所以 1*2 + 2*3 + 3*4 + ... + n*(n+1)= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)= (1²+2²+3²+...+n²) + (1+2+3+...+n)=n(n+1)(2n+1)\/6 +(1+n)n...
1*2+2*3+3*4+...+n(n+1)=
因为 k*(k+1) = k² + k 所以 1*2 + 2*3 + 3*4 + ... + n*(n+1)= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)= (1²+2²+3²+...+n²) + (1+2+3+...+n)= n(n+1)(2n+1)\/6 + n(n+1...
1×2+2×3+3×4+……n×(n+1)=( ) 填公式
Sn=1×2+2×3+3×4+……+n(n+1)=1^2+1+2^2+2+3^2+3+……+n^2+n =(1+2+3+……+n)+(1^2+2^2+3^2+……+n^2)=n(n+1)\/2+(1^2+2^2+3^2+……+n^2)S(n)=n(n+1)(2n+1)\/6 s=1^2+2^2+...+n^2 =n(n+1)(2n+1)\/6 =(n^2+n)(2n+1)\/...
计算;3×(1×2+2×3+3×4+...+99×100)等于多少,公式是什么?
=[n(n+1)(2n+1)\/6]+[3n(n+1)\/6]=[n(n+1)(2n+1)+3n(n+1)]\/6 =n(n+1)(2n+1+3)\/6 =n(n+1)(2n+4)\/6 =2n(n+1)(n+2)\/6 =n(n+1)(n+2)\/3 所以,原式的通项公式=n(n+1)(n+2),其中n=1,99 故,3×(1×2+2×3+3×4+...+99×100)=99×100×...
1*2+2*3+3*4+……+n*(n+1)的公式是什么?
Sn=1×2+2×3+3×4+……+n(n+1)=1^2+1+2^2+2+3^2+3+……+n^2+n =(1+2+3+……+n)+(1^2+2^2+3^2+……+n^2)=n(n+1)\/2+(1^2+2^2+3^2+……+n^2)关键求1^2+2^2+3^2+……+n^2 如下 2^3=(1+1)^3=1^3+3*1^2+3*1+1 3^3=(2+1)^3=2...
1乘2+2乘3+3乘4 +...+N(N+1)=
分析:各个加数的通项就是:an=n*(n+1)(n+2)=n^3+3n^2+2n,所以数列的每一项可以看成是三项的和,这样整个数列的前n项和可以用前n个自然数的立方和、前n个自然数的平方方和、前n个自然数的和公式求出。1*2*3+2*3*4+……+n(n+1)(n+2)=(1^3+2^3+3^3+……+(n-1)^...
1*2+2*3+3*4+...+n(n+1)=? 快快快!!!
用这个:3*n(n+1)= -(n-1)n(n+1) +n(n+1)(n+2)代入展开就明白余下最后一项n(n+1)(n+2)\/3
1*2+2*3+3*4+...+n*[n+1]=?求过程
1*2 + 2*3 + 3*4 + ... + n*(n+1)= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)= (1²+2²+3²+...+n²) + (1+2+3+...+n)= n(n+1)(2n+1)\/6 + n(n+1)\/2 = [n(n+1)\/6] * (2n+1+3)=...
1*2+2*3+3*4+..+n*(n+1)等于多少
=1^2+1+2^2+2+3^2+3+...+n^2+n =(1^2+2^2+...+n^2)+(1+2+3+...+n)=n(n+1)(2n+1)\/6+n(n+1)\/2 =n(n+1)[(2n+1)\/6+1\/2]=n(n+1)(n+2)\/3