弦长公式怎么用

如题所述

直线与圆锥曲线相交所得弦长d为:
公式一:
d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2]

关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+k^2)[(x1+x2)^2 - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

公式二:(鱼鱼补充)
d =√[(1+k^2)△/a^2] =√(1+k^2)√(△)/|a|

个人感觉,在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个两元一次方程,其中△为两元一次方程中的 B^2-4AC ,a为二次项系数
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-05-18
圆与直线的关系.圆锥曲线.带电粒子在磁场或复合场中的运动等方面.希望对楼主有帮助
第2个回答  2020-03-17

弦长公式怎么用?
弦长公式适用范围:直线与圆锥曲线相交所得弦长都可以用弦长公式。因为弦长公式是计算两点间距离通用的公式,它是由余弦定理所推导出来的。由∣AB∣=∣x1-x2∣\/cosα=∣y1-y2∣\/sinα,推出:∣AB∣=√[(x1-x2)^2+(y1-y2)^2]=√(1+k^2)∣x1-x2∣=√(1+1\/k^2)∣y1-y2∣其中...

弦长公式怎么用
公式一:d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1\/k^2)|y1-y2| = √(1+1\/k^2)[(y1+y2)^2 - 4y1y2]关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达...

参数方程问题中。求弦长AB 有两个公式|t1-t2| |t+t2|我想知道在什么情况...
|t1+t2|不是弦长公式,|AB|=|t2-t1|这是普遍适用的求弦长公式。弦长公式指直线与圆锥曲线相交所得弦长d的公式。抛物线:1、y²=2px,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2 2、y²=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两...

高考数学弦长公式及其用法
弦长公式,指直线与圆锥曲线相交所得弦长d的公式。 弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1\/k^2)+1] 。其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。

怎样用弦长公式来求椭圆的弦长最短呢?
此时M到准线的距离取到最小值,于是AB长度也取得最小值。2、代数方程法:设出椭圆方程为x^2\/a^+y^2\/b^2=1 过焦点F(c,0)的直线方程为x=my+c(这里不能设成y=k(x-c),因为通径的斜率不存在)。然后方程联立,利用弦长公式可整理成关于m的函数式。从中求出当且仅当m=0时,弦长最短。

求圆弦长的三种方法
第一种方法:使用弦长公式,弦长公式为:s=r2−d2。其中,s为弦长,r为圆的半径,d为弦的两端点到圆心的距离之差。第二种方法:使用垂径定理,垂径定理:过圆心且垂直于弦的线段叫做弦的垂径。垂径平分弦,并且平分弦对应的圆弧。使用垂径定理求弦长,可以先求出垂径的长度,然后再将垂径...

1 弦长公式及其应用
首先,我们联立直线l与椭圆的方程,得到关于x和y的二次方程。对于椭圆方程,我们可以用Ax^2 + By^2 + Cx + Dy + E = 0表示,其中A≠0, B≠0。对于直线l,其一般形式为mx + ny + p = 0。弦长公式在这里将派上用场,我们计算出A, B, C, D, E的值,并求出A和B的交点坐标。接着...

弦长公式什么时候用y什么时候用x
弦长公式还有一个重要的应用,即可以帮助我们计算圆上任意两点之间的弧长。这是因为圆弦的长度和圆上两点之间的弧长是成比例的,经过一定的数学证明可以得到:圆周长=2r,其中r为圆的半径。因此,如果我们已知圆心角的大小(用弧度制表示),可以通过将圆心角除以2,再用结果乘以圆的周长(即2r)来计算出...

用韦达定理求弦长公式
弦长 = sqrt((x2 - x1)^2 + (y2 - y1)^2)其中,(x2 - x1)^2 = (x2 + x1)^2 - 4x1*x2,代入韦达定理中的关系式,得到 弦长 = sqrt((b^2\/a^2 - 4c\/a)^2 + (y2 - y1)^2)这个公式就是用韦达定理求弦长的公式。通过这个公式,我们可以方便地计算出二次曲线与x轴的...

我想问下,这是求什么的弦长公式?怎么使用
椭圆的弦长公式:d = √(1+k^2)|x1-x2|= √(1+k^2)[(x1+x2)^2 - 4x1x2]= √(1+1\/k^2)|y1-y2|= √(1+1\/k^2)[(y1+y2)^2 - 4y1y2]1、焦点在X轴时,标准方程为:x^2\/a^2+y^2\/b^2=1 (a>b>0)2、焦点在Y轴时,标准方程为:x^2\/b^2+y^2\/a^2=1 (...

相似回答