晶体三极管中有两种不同的极性电荷的载流子参与导电,故称之为双极型晶体管(BJT)。它是一种电流控制电流的半导体器件,具有电流放大作用,其主要作用是把微弱输入信号放大成幅值较大的电信号,是很多常用电子电路的核心元件。
三极管的原理图符号主要有两种,如图1所示。
图1
Q1为NPN管,Q2为PNP管,E极箭头方向代表发射结正向偏置时电流的实际方向,它们对应的基本结构如图2所示。
图2
由三个相邻互不相同的杂质半导体叠加起来,就形成了三极管的基本结构。从三个杂质半导体区域各引出一个电极,我们分别将其称之为发射极(Emitter)、集电极(Collector)、基极(Base);而对应的区域分别称为发射区、集电区、基区;相邻的两个不同类型的杂质半导体将形成PN结,我们把发射区与基区之间的PN结称之为发射结,而把基区与集电区之间的PN结称之为集电结。
三极管的实物图
三极管在实际应用中可能有三种工作状态:
截止:发射结反偏,集电结反偏。
放大:发射结正偏,集电结反偏。
饱和:发射结正偏,集电结正偏。
下面我们以NPN三极管为例详细讲解三极管放大状态的工作原理。
三极管放大状态原理
话说天下大势,分久必合,合久必分,在这片由三块半导体组成的小区域内,也上演了一部猛兽争霸史,故事就发生在图3所示的这片区域。
图3
在没有任何处理的NPN三极管施加了两个电压之后,如图4所示。
图4
要使NPN管处于放大状态,施加在CE结两端的电压Vce比施加在BE结的电压Vbe要大。因此,NPN管三个极的电位大小分别是:VC>VB>VE,(发射极电位Ve为参考电位0V),这样一来,三极管的发射结是正向偏置,而集电结是反向偏置,这就是三极管处于放大状态的基本条件。
在电压连接的一瞬间,假设基-射(发射结)偏置电压Vbe=5V,而集-射极偏置电压Vce=12V,两个N型半导体与P型半导体形成了两个PN结,BE结(发射结)正向电压偏置而导通将基极电位限制在0.7V(硅管),而集电极电位由于PN结反向偏置截止而为12V(瞬间电位,此时集电极电流还没有),如图5所示。
图5
好,一切已经就绪,一场战争马上就要开始了!
当发射结外加正向电压Vbe(正向偏置)时,由于发射区的掺杂浓度很高(三个区中最高),而基区的掺杂浓度最低,发射区的多数载流子电子将源源不断地穿过发射结扩散到基区(因浓度差而引起载流子由高浓度区域向低浓度区域的转移,称为扩散),形成发射结电子扩散电流Ien(该电流方向与电子运动方向相反)。
与此同时,基区的多数载流子空穴也扩散至发射区,形成空穴扩散电流Iep(该电流方向与Ien相同),很明显,Iep相对于Ien而言很小,然而,革命的力量是不分大小的!Ien与Iep两者相加发射极电流Ie,如图6所示。
图6
从发射区扩散到基区的多数载流子电子在发射结附近浓度最高,离发射结越远浓度越低,从而形成了一定的电子浓度差,这种浓度差使得扩散到基区的电子继续向集电结方向扩散。在电子扩散的过程中,有一小部分电子与基区的多数载流子空穴复合,从而形成基区电流Ibn。我们知道,基区很薄且掺杂浓度低,因此,电子与空穴复合机会少,基区电流Ibn也很小,大多数电子都将被扩散到集电结,如图7所示。
图7
由于集电结是反向偏置电压,空间电荷区的内电场被进一步加强(PN结变宽),这样反而对基区扩散到集电结边境的载流子电子有很强的吸引力(电子带负电,同性相斥异性相吸),使它们很快漂移过集电结(电场的吸引或排斥作用引起的载流子移动叫做漂移),从而形成集电极电流Icn(方向与电子漂移方向相反)。很明显,Icn=Ien-Ibn,因为百万大军一小部分在基区,剩下的大部分在集电区,如图8所示。
图8
在多数载流子电子进入到集电区后,集电区(N型)的少数载流子空穴与基区(P型)的少数载流子电子也会产生漂移运动,形成了电流Icbo,而另有一些会跨过基区到达发射区从而形成Iceo,如图9所示。
图9
Icbo表示集电极-基极反向饱和电流,Iceo表示集电极-发射极反向饱和电流(也统称为穿透电流),它们不受发射结电压Vbe控制,也不对电流的放大做出贡献,只取决于温度和少数载流子的浓度,当然是越小越好。在相同条件下,硅管的穿透电流比锗管小,在某些大功率应用场合,还必须外接穿透电流释放电阻,防止穿透电流引起三极管过热而损坏。
在三极管的放大状态下,只要控制外加发射结电压Vbe,基极电流IB也会随之变化,继而控制发射区的多数载流电子数量,最终也将控制集电极的电流IC。从三极管放大的原理上可以看出,所谓的“放大”并不是将基极电流IB放大,只不过是用较小的基极电流IB值来控制较大的集电极电流IC值,从外部电路来看就好像是IB被放大一样,这与“四两拔千斤”也是一个道理。
小结
如果上面的过程显得太麻烦的话,总结就三句话:
1)发射结加正向电压,扩散运动形成发射极电流Ie。
2)扩散基区的自由电子与空穴的复合运动系形成了基极电流Ib。
3)集电结加反向电压,漂移运动形成集电极电流Ic。
直流放大特性
就像铭记二极管的单向导电特性一样,只要谈起三极管就要想到“电流放大”。
结论是:三极管是一个具有电流放大功能的器件,三极管b极上的小电流可以控制c极的大电流。
图10
为了让这个枯燥的概念形象些, 我们用一幅画来比喻三极管的电流放大作用,见图10。
把三极管比作一个水箱, 其排水管由阀门控制,只要微调阀门就能控制排水管的流量。水箱好像三极管的c极,阀门就好像b极,而排水管相当于e极。当三极管b极获得如图所示的微小偏置电压后(+0.7V) ,就好像阀门被打开一样, 水得以从水箱向下快速流出一电流从c 极流向e极。且三极管b极偏置电压消失,就好像阀门关上了一样,c极到e极也就没有电流了。
三极管有电流放大作用,但是要有个条件,你知道吗?
NpN型三极管处于放大状态的条件是?
基极电流处于0和饱和状态之间的才是放大状态,
对于NPN型三极管放大时是Uc>Ub>Ue,而PNP的是Uc<Ub<Ue,但又说啥子发射...
1、三极管处于放大状态的判断条件是:发射结正偏,集电结反偏。这个结论对于NPN和PNP三极管都适用。如果你要记,就记这个好了。2、NPN,PNP,两种三极管,其发射结和集电结的方向是不同的。PN结的方向都是从P区指向N区。以NPN为例:集电结的方向是从基极(B)指向集电极(C),发射结的方向是从...
2N3055三极管的导通条件,
对于2N3055三极管(NPN型三极管),一般的处于放大区的条件是Uc>Ub>Ue,并且Ub和Ue之间的电压差要大于发射结的初始导通电压。虽然放大区也有很小一块区域是Uc<Ub,但那已经极其接近饱和区了(当然饱和也是一种导通状态),一般工作在放大状态下的三极管在设计上不使它进入那个区域。对于PNP型三极管,情况...
三极管的放大状态怎么判断?
1、对于NPN型硅三极管,当基极电压高于发射极0.6V左右,集电极电压高于发射极电压0.4V以上且低于电源电压时,该三极管处于放大状态;当基极电压高于发射极0.4V以下或低于发射极电压时,处于截止状态;当基极电压高于发射极0.6V左右,集电极电压高于发射极0.3V左右,处于饱和状态。2、对于PNP型硅三极管,当...
NPN型晶体管放大状态时,为什么要求UCE>UBE?
三极管处于放大状态时有个必要的偏置条件,即发射结正偏,集电结反偏,对应于NPN三极管这一偏置要求也可以描述为Uc>Ub>Ue,据此导出 Uce=Uc-Ue Ube=Ub-Ue 由于Uc>Ub,所以Uce>Ube。
晶体管工作在放大状态的外部条件是__
三极管工作放大状态的条件是:发射结正偏,集电结反偏。放大原理 1、发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以...
npn三极管截止、饱和和放大状态如何分辨?
NPN三极管的三个工作状态——截止、饱和和放大——可以通过以下方法进行分辨:1. 截止状态:在NPN三极管中,当发射极与基极之间的电压Ube小于0.7伏(对于锗管来说是小于0.3伏)时,三极管处于截止状态。这意味着发射结是反偏的。2. 放大状态:在这种状态下,发射极与基极之间的电压Ube大于0.7伏,而...
3极管的三种工作状态条件
三极管的三种工作状态分别是:截止状态、放大状态、饱和状态。1. 截止状态:当三极管基极电压低于一定阈值时,集电极和发射极之间无电流流动,相当于一个断路。对于NPN型三极管,截止的电压条件是发射结电压Ube小于0.7V,即Ub-Ue<0.7V;对于PNP型三极管,截止的电压条件是Ueb小于0.7V,即Ue-Ub<0.7V...
pnp和npn放大条件一样吗
NPN型三极管:由三块半导体构成,其中两块N型和一块P型半导体组成,P型半导体在中间,两块N型半导体在两侧。三极管是电子电路中最重要的器件,它最主要的功能是电流 放大和开关作用。放大条件:NPN型管集电极接负极,发射极接正极,电压要大于饱和电压。基极相对发射极为正。硅管约0.6v,锗管约0.2v...
npn三极管截止、饱和和放大状态如何分辨?
放大状态:发射极正偏,集电极反偏。即Ube>0.7V,Uce>Ube;饱和状态:发射极正偏,集电极正偏。即Ube>0.7V,Uce<Ube。所以根据条件可知NPN三极管Ube<0.7 (或0.3),因此这个三极管是处于截止状态 PNP管判断如下:截止状态:Ueb<0.7V; (如果是锗管则Ueb<0.3V)放大状态:Ueb>0.7V,Uec...