求x→0时lim[1\/x-1\/(e^x-1)]的极限
所以,极限为:x→0时lim[1\/x-1\/(e^x-1)]=lim[x^2\/2+o(x^2)]\/x^2=1\/2+0=1\/2
lim(x→0)[1\/x-1\/(e的x次方-1)]
1\/x-1\/(e^x-1)=limx趋近于0 (e^x -1-x)\/x*(e^x-1)x趋于0时,e^x-1等价于x 那么原极限 =limx趋近于0 (e^x -1-x)\/x^2 使用洛必达法则,分子分母同时求导 =limx趋近于0 (e^x -1)\/2x =limx趋近于0 x\/2x =1\/2 故极限值为1\/2 ...
lim(x→0)[1\/x-1\/(e的x次方-1)]
lim(x→0)[1\/x-1\/(e的x次方-1)]=1\/2。lim(x→0)[1\/x-1\/(e的x次方-1)]可变成:lim(x→0)(e^x-1-x)\/(xe^x-x)属0\/0型,连续运用洛必达法则,最后是:lim(x→0)e^x\/2e^x+xe^x 当x趋于0时,此式趋于1\/2 ...
求极限limx->0(1\/x - 1\/e^x-1) 怎么算 求教我
x→0 lim 1\/x-1\/(e^x-1)=lim (e^x-1-x) \/ x(e^x-1)利用等价无穷小:e^x-1~x =lim (e^x-1-x) \/ x^2 该极限为0\/0型,根据L'Hospital法则 =lim (e^x-1-x)' \/ (x^2)'=lim (e^x-1) \/ 2x 再利用等价无穷小:e^x-1~x =lim x \/ 2x =lim 1\/2 =1\/2 ...
求极限lim(x趋近于0) (1\/x-1\/(e^x -1))要过程,谢谢
lim(x趋近于0) (1\/x-1\/(e^x -1))=lim(x趋近于0) (e^x-1-x)\/x(e^x -1)=lim(x趋近于0) (e^x-1-x)\/x²=lim(x趋近于0) (e^x-1)\/2x =lim(x趋近于0) e^x\/2 =1\/2
求当x趋近0时,1\/x-1\/(e^x-1) 的极限
极限应该是1\/2。1\/x-1\/(e^x-1)=(e^x-1-x)\/(x*(e^x-1))e^x-1-x=1\/2*x^2+o(x^2),从e^x的泰勒级数可以知道 x*(e^x-1)=x*(x+o(x))=x^2+o(x^2)所以结果是1\/2。
limx趋向0,1\/x-[1\/(e^x-1)]的极限求解
如图
求极限:lim(1\/x-1\/(e^x-1)) x趋向于0
lim(x→0)(1\/x-1\/(e^x-1))=lim(x→0)(e^x-1-x)\/[x(e^x-1)]=lim(x→0)(e^x-1-x)\/x^2 =lim(x→0)(e^x-1)\/(2x)=lim(x→0)x\/(2x)=1\/2
用洛必达法则求limx→0(1\/x-1\/e^x-1)的详细步骤
limx→0(1\/x-1\/e^x-1)=limx→0(e^x-1-x)\/[x(e^x-1)] (运用等价无穷小代换)=limx→0(e^x-1-x)\/x^2(0\/0,运用洛必达法则)=limx→0(e^x-1)\/(2x) (运用等价无穷小代换)=limx→0 x\/(2x)=1\/2
lim(1\/x-1\/e的X次方-1),X趋向于0,结果是多少
思路:先通分,化为0\/0型,然后两次用罗必大法则(分子,分母分别求导后再求极限)解lim(1\/x-1\/e的X次方-1)(x→0)=lim[(e^x-1)-x]\/[x(e^x-1)](x→0)(0\/0型,用罗必大法则)=lim[(e^x-0)-1]\/[(e^x-1)+xe^x-0](x→0)(再次用罗...