如果事件A的发生会使事件B的发生大大增加(例如A为携带手机进学校被老师发现,B为老师发怒,因为手机的发现使老师生气的可能性大大增加),而B的发生对A几乎没什么影响(比如老师平时发怒对手机会不会没收没什么影响),那A与B事件是什么关系?互斥?相互独立?而且P(B|A)是比P(B)大还是小呢?
概率论经典题目有哪些?
1.抛硬币问题:假设你抛一枚均匀的硬币两次,第一次得到正面的概率是多少?两次都得到正面的概率是多少?2.生日问题:在一个房间里有23个人,至少两个人的生日在同一天的概率是多少?3.蒙特卡洛方法:使用蒙特卡洛方法估计π的值。4.二项分布问题:从一个包含5个红球和7个黑球的袋子中随机抽取一个球...
概率问题
a拔b拔是A拔并B拔,即同时不发生 ab拔是A并B的拔,即除去ab同时发生概率,ab不同时发生 对于任意两个事件A和B来说,有四种互斥事件分别为A发生B发生,即AB;A发生B不发生,即AB拔;A不发生B发生,即A拔B;A不发生B不发生,即A拔B拔。P(A拔B)+P(AB拔)+P(A拔B拔)+P(AB)=1 ...
概率问题概率问题。求概率高手解答。
首先,处理一个组合问题<!--:要从1到49的数字中随机选择7个,组合的数量可通过数学公式 C(49, 7)<!-- 来计算,即从49个元素中选择7个的组合总数。其次,理解几何分布<!--:每次抽取卡片的次数遵循几何分布,其期望值等于概率的倒数。对于一套包含8种卡片的情况,集齐所需的期望次数是这8个概...
概率问题的解题思路有哪些?
解决概率问题的思路主要有以下几种:1.直接法:这是最直接的解题方法,适用于一些简单的概率问题。直接计算出事件A发生的概率P(A),然后根据题目要求进行计算。2.加法定理:如果一个事件可以分解为两个或多个互不相交的事件的和,那么这个事件的概率等于这些事件的概率之和减去这些事件的交集的概率。3....
概率问题?
第二步从60个黑球当中取5个黑球,每次取黑球有60种可能,一共取5次,则60的5次幂。2、前面为的限定了先取15个白球再取5个黑球这样的顺序,改变了题目所要求的条件,因而要增加系数,理解为所取的15个白球任意放置于20个格子里去,剩余5个格子任意放置5个黑球,任意放置属于组合问题。
概率的数学计算方法如何计算概率的问题?
概率的数学计算方法如下:1、直接计数法:如果可能事件的数目不多,我们可以直接计算出每个事件发生的次数,然后用每个事件发生的次数除以总次数,得到该事件发生的概率。例如,投掷一枚公正的硬币,正面朝上的概率是0.5,反面朝上的概率也是0.5。2、列表试验法:当可能事件的数目较多时,我们可以采用列表...
关于概率的一些问题
【一】随机。概率论中充满了随机的因素。我们可以说,一个人的成绩好坏来源于它的勤奋。可是如果,一个人买彩票中奖,这是运气。也就是随机事件。这是不可控的,你之前买多少期彩票,和你这期是否中奖没有任何联系。因为,你中奖,和不中奖都是随机的。不会一定中。也不会一定不中。我想这也解释了...
数学中的概率问题如何求解?
一:抽球类问题数学期望 E=n*E1 注:E为数学期望,E1为抽一次球的数学期望,n为抽的次数 例:有完全相同的黑球,白球,红球共15个,其中黑7个,白3个,黑5个 则抽5次抽到黑球的个数的数学期望E=5*(5\/15)=5\/3 衍生问题还有抽人,抽产品等 二:遇红灯问题数学期望 E=P1+P2+……..注...
关于概率的问题
概率是固定的极限值,没有变化。变化的是频率。3、频率在试验次数非常少的情况下有较大的波动,而在试验次数非常多的情况下有较小的波动,比如100次内出现80次正面的可能性要比10次出现8次的可能性小得多(虽然频率都是0.8),因此随着次数增加,频率偏离概率的幅度会减小:10次内正面频率为0.8的...
概率是多少?
接下来,我们要计算至少有一名男生被选中的概率。由于总的可能选择方式为C(5,2),而没有一名男生被选中的概率为0.3,那么至少有一名男生被选中的概率就等于1减去没有一名男生被选中的概率。即1-0.3=0.7。因此,至少有一名男生被选中的概率是70%。这个结果直观地回答了题目中关于概率的问题,通过...