一个等差数列和一个等比数列的每项相乘怎么求其和啊

如题所述

数列求和的基本方法和技巧
魏凤玲
关键词:数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法 合并法
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.

一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:
2、 等比数列求和公式:
自然数方幂和公式:
3、 4、
5、
[例] 求和1+x2+x4+x6+…x2n+4(x≠0)
解: ∵x≠0
∴该数列是首项为1,公比为x2的等比数列而且有n+3项
当x2=1 即x=±1时 和为n+3

评注:
(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.
(2)要弄清数列共有多少项,末项不一定是第n项.
对应高考考题:设数列1,(1+2),…,(1+2+ ),……的前顶和为 ,则 的值。

二、错位相减法求和
错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例] 求和: ( )………………………①
解:由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积
设 ………………………. ② (设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:

注意、1 要考虑 当公比x为值1时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题:设正项等比数列 的首项 ,前n项和为 ,且 。(Ⅰ)求 的通项; (Ⅱ)求 的前n项和 。
三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .
[例] 求证:
证明: 设 ………………………….. ①
把①式右边倒转过来得
(反序)
又由 可得
…………..…….. ②
①+②得 (反序相加)

四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。
[例]:求数列 的前n项和;
分析:数列的通项公式为 ,而数列 分别是等差数列、等比数列,求和时一般用分组结合法;
[解] :因为 ,所以

(分组)
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此

五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1) (2)
(3) (4)
(5)
[例] 求数列 的前n项和.
解:设 (裂项)
则 (裂项求和)


小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
[练习] 在数列{an}中, ,又 ,求数列{bn}的前n项的和.

六、合并法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若 的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)


=10
数列的求和方法多种多样,它在高考中的重要性也显而易见。我们的学生在学习中必须要掌握好几种最基本的方法,在解题中才能比较容易解决数列问题。
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-10-18
典型的差比数列 方法是 把Sn写出来然后再写一个Sn除以数列中等差数列的公比再错位相减 比如其中等比数列公比是1/2就是
Sn-1/2Sn 就可以了

一个等差数列和一个等比数列的每项相乘怎么求其和啊
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是...

等差数列和等比数列求和公式?
等比数列求和公式是bn=a1(1-qn)\/(1-q)(q≠1),其中an和bn为第n项,n为项数,a1为第一项,d为公差,q为等比,所以等差乘等比求和公式等于sn=an*bn。

等比数列与等差数列相乘求和用什么法
形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。【典例】:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)当x=1时,Sn=1+3+5+…+(2n-1)=n2...

等差数列和等比数列乘积求和用什么方法
(乘上公比)再用错位相减法。例如 设Sn=1*2+2*2^2+3*2^3+.+n*2^n (1)则2*Sn= 1*2^2+2*2^3+3*2^4+.+(n-1)*2^n+n*2^(n+1) (2)然后(2)-(1)得:2*Sn-Sn=n*2^(n+1)-2^1-2^2-2^3-.-2^n 左端等式再化简可得 ...

等差数列与等比数列对应项乘积的求和公式(不要方法就要公式)
错位相减 设等差数列首项为a1,公差为d 等比数列首项为b1,公比为q 则Sn=a1b1+a2b2+...+anbn=a1b1(1-q)+db1q(1-q^(n-1))-(a1+(n-1)d)b1q^n(1-q)

等差乘等比用什么方法求和
等差乘等比求和的方法是:用错位相减法。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。等差乘等比公式介绍:在数学中,等差乘等比公式是重要的概念,它可以帮助我们解决各种复杂的数学问题。它的基本概念是相邻的两个或更多的数字之间的差值...

等比和等差数列的求和公式
等比数列是指每一项与其前一项的比等于常数的数列。等比数列的求和公式为:S_n=a_1*(1-q^n)\/(1-q),其中,S_n表示前n项的和,a_1表示第一项,q表示公比。这个公式可以通过将等比数列视为一种特殊的等差数列来推导。利用等比数列的定义和等差数列的求和公式,我们可以得到这个公式。注意在...

等差、等比数列的求和公式和求每项的公式都是什么啊
等差,求和=(首项+末项)*项数\/2;每项= 前一项 + 公差 = 首项 + (n - 1)*d 等比,S = a1(1-q^n)\/(1-q)an= a1*q^(n-1);

一个数列是由一个等比数列×一个等差数列组成 怎么求和
比如通项an=(n+1)*2^n 数列求前n项和.之后要用等比求和。(4)通项为等比*等比,要求和,构一新等比数列。比如通项an=(2^n)*(3^n)=6^n数列求前n项和.之后要用等比求和.(5)通项为等差*二项式,要求和,用倒序相加法。比如通项an=(n+1)*C(M,n),数列求前n项和。M>=n 就...

等差×等比数列求和方法
等差×等比数列求和方法如下:若数列的第一项为a1,公差为d,第n项为an,前n项和为Sn,则有: Sn = n\/2 [2a1 + (n-1)d]

相似回答