连续和可导的关系,快来学习吧
我的意思你可能没明白,我是说一个函数在一点上可导,可以推出它在这个点的邻域内连续吗?若能请给出证明,若不能请举个反例
我的意思你可能没明白,我是说一个函数在一点上可导,可以推出它在这个点的邻域内连续吗?若能请给出证明,若不能请举个反例
追答在我的原回答中首先给出的“如果函数y=f(x)在点x0处可导,则它在点x0处一定连续”是一条定理,就直接回答了你追问的“一个函数在一点上可导,可以推出它在这个点的邻域内连续吗?”的问题,回答是肯定的,只是没给出证明而已。现证明如下:
因为函数y=f(x)在点x0处可导,所以有
Δx→0 lim(Δy/Δx)= f(x0),
又 Δy=(Δy/Δx)•Δx.
故 Δx→0 limΔy=[Δx→0 lim(Δy/Δx)•Δx]
=[Δx→0 lim(Δy/Δx)] • [Δx→0 limΔx]= f′(x0)•0=0.
这就证明了函数y=f(x)在点x0处连续,也就是在这个点的邻域内连续。
注意,Δx→0的Δx是在点x0处的邻域内的。
我的意思你可能没明白,我是说一个函数在一点上可导,可以推出它在这个点的邻域内连续吗?若能请给出证明,若不能请举个反例
宋聪聪律师
擅长:婚姻家庭
张保刚律师
擅长:公司法务
刘勇律师
擅长:损害赔偿
王莉律师
擅长:劳动工伤
陈娜律师
擅长:税务合规
朱哲雨律师
擅长:合同纠纷
李昌锁律师
擅长:经济纠纷
李金杏律师
擅长:债权债务
查
看
更
多
连续与可导的关系
可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。关于函数的可导导数和连续的关系1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、...
连续与可导的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微=>可导=>连续=>可积
连续与可导的关系是什么?
连续与可导的关系:1、连续的函数不一定可导;2、可导的函数是连续的函数;3、越是高阶可导函数曲线越是光滑;4、存在处处连续但处处不可导的函数。可导:微积分是在17世纪末由英国物理学家、数学家牛顿和德国数学家莱布尼茨建立起来的。微积分是由微分学和积分学两部分组成,微分学是基础。微分学的基本...
可导与连续的关系是什么?
连续与可导的关系是:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。函数可导的充要条件 函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)...
函数的可导性与连续性的关系
函数的可导性与连续性的关系:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。先看几个定义:1、连续点:如果函数在某一邻域内有定义,且x->x0时limf(x)=f(x0),就称x...
函数的连续与可导有什么联系和区别?
关于函数的可导导数和连续的关系:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏...
可导与连续的关系
可导与连续的关系是可导一定连续,连续不一定可导。也就是说,如果一个函数在某点可导,那么这个函数在该点一定连续;但是如果一个函数在某点连续,那么这个函数在该点不一定可导。这是因为连续是函数的取值,可导是函数的变化率。可导是更高一个层次。具体来说,存在处处连续但处处不可导的函数。左导数...
连续与可导的关系是什么?
一、连续与可导的关系:1. 连续的函数不一定可导;2. 可导的函数是连续的函数;3.越是高阶可导函数曲线越是光滑;4.存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,...
连续和可导的关系
连续和可导的关系,快来学习吧
如何判断函数是连续的还是可导的?
关于函数的可导导数和连续的关系:1、连续的函数不一定可导。2、可导的函数是连续的函数。3、越是高阶可导函数曲线越是光滑。4、存在处处连续但处处不可导的函数。如果函数y=f(x)在点x0处可导,则它在点x0处一定连续;但是,函数y=f(x)在点x0处连续,在该处却不一定可导,就是说有不可导...