1\/1x2十1\/2x3+1\/3x4十…十1\/n(n+1)=?
12
1\/1x2十1\/2x3十1\/3x4十…十1\/98x99十1\/99x100=?
这是典型的裂项求和。1\/[x(x+1)]=1\/x-1\/(1+x),然后用累加法。给你提供一个结论:Sn=1\/1x2十1\/2x3十1\/3x4十…十1\/[x(x+1)]=x\/(x+1)。所以这一题的答案是99\/100.如果还有什么不懂的请追问。
1\/1X2十1\/2X3十1\/3X4十………十1\/2010X2011
2012\/2011
lim(1\/1x2十1\/2x3十……1\/n(n十1))
lim(1\/1x2十1\/2x3十……1\/n(n十1)) 我来答 1个回答 #热议# 该不该让孩子很早学习人情世故?fin3574 高粉答主 2015-10-06 · 说的都是干货,快来关注 知道大有可为答主 回答量:2.5万 采纳率:89% 帮助的人:1.1亿 我也去答题访问个人页 关注 展开全部 已赞过 已踩过< 你对这个...
...到十乘十一分之一(先乘一乘二、二乘三…十乘十一一类的)
解:(3) 1\/1x2+1\/2x3+1\/3x4+1\/4x5+1\/5x6+1\/6x7+1\/7x8+1\/8x9+1\/9x10+1\/10x11 =(1--1\/2)+(1\/2--1\/3)+(1\/3--1\/4)+(1\/4--1\/5)+(1\/5--1\/6)+(1\/6--1\/7)+(1\/7--1\/8)+(1\/8--1\/9)+(1\/9--1\/10)+(1\/10--1\/11)=1--1\/11 =10\/11.
1\/1x2十1\/2x3十1\/3x4十…十1\/98x99十1\/99x100=?
裂项法:1\/1x2十1\/2x3十1\/3x4十…十1\/98x99十1\/99x100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/98-1\/99+1\/99-1\/100 =1-1\/100 =99\/100
1\/1x2十1\/2x3十1\/3x4……十1\/39x40等于多少
所以1\/1x2十1\/2x3十1\/3x4……十1\/39x40=1-1\/2+1\/2-1\/3+1\/3-1\/4……+1\/39-1\/40。由于-1\/2+1\/2=0,-1\/3+1\/3……-1\/39+1\/39=0。所以最好的结果是1-1\/40=39\/40。即: 1\/1x2十1\/2x3十1\/3x4……十1\/39x40 =1-1\/2+1\/2-1\/3+1\/3-1\/4……+1\/39-1...
1X2十2X3+……n(n+1)=?
解法一:n(n+1)=⅓×[n(n+1)(n+2)-(n-1)n(n+1)]1×2+2×3+...+n(n+1)=⅓×[1×2×3-0×1×2+2×3×4-1×2×3+...+n(n+1)(n+2)-(n-1)n(n+1)]=⅓n(n+1)(n+2)解法二:n(n+1)=n²+n 1×2+2×3+...+n(n+1)=(1&...
根据1x2分之1加2x3分之1加3x4分之1的规律写岀n(n十1)分之1二什么
根据1x2分之1加2x3分之1加3x4分之1的规律写岀n(n十1)分之1 裂项法:n(n十1)分之1=1\/n-1\/(n+1)1x2分之1加2x3分之1加3x4分之1+……+n(n十1)分之1 =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/n-1\/(n+1)=1-1\/(n+1)=n\/(n+1)
1x2十2x3+3x4……十nx(n十1)
1x2十2x3+3x4……十nx(n十1)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)\/6+n(n+1)\/2 =n(n+1)(n+2)\/3 如果不懂,请追问,祝学习愉快!