一、某楼盘在闹市车站有看房直通车,已知汽车每个整点的第5分,25分和55分分别从闹市出发,假定一顾客在早上8点的第x分来到闹市坐车看房,已知x~U[0,60]求该顾客平均候车时间。
二、设随机变量(x,y)在矩形G={(x , y)| 0<x<2 , 0<y<1}上服从均匀分布,试求边长为X和Y的矩形面积S的概率密度f(s)。
(5/60)*5/2+(20/60)*20/2+(30/60)*30/2+(5/60)*(5/2+5)
1/2
具体算应该要微分后再积分的计算过程
不是很清楚你说的,比如第一项5/2直接求的算术平均候车时间?能否再具体详细点。
第二题请顺便附上。。。
简单平均分布的话,比如第二题的Y值,取值区间(0,1),按这个区间求Y的积分等于(1-0)/2,
所以一些简单分布就直接除2, 当然你也可以把积分式都列出来结果一样。。
复杂的方程式分布积分就麻烦很多
你是怎么确定就是简单分布的呢。 我怎么感觉候车时间是关于到站时间的一个分段函数。额,但是写出分段函数之后是该积分还是怎么继续做。你是否方便把答案写点再详细一些,拜托了。 第二题怎么做能否顺便指点下。
如图,两道概率论与数理统计题目, 求高手请教~ 过程详细再追加~_百度...
卡方(n)<n的概率 即使n很大也难以小于0.1,也许是这个表格不全,等我找一个大点的 P(卡方(n)<n)随着n增长临界到稍大于0.5处,所以应该是全部正整数n都拒绝。中位数都比n小,无论n怎么增加P(卡方(n)<n)还是稍大于0.5
概率论与数理统计的计算题,求大家帮忙
解:有题设条件,E(X)=1,D(X)=4、E(Y)=2,D(Y)=9。∴E(Z)=E(4X+2Y)=4E(X)+2E(Y)=4*1+2*2=8。又,X、Y相互独立,D(Z)=D(4X+2Y)=(4^2)D(X)+(2^2)D(Y)=16*4+4*9=100。根据正态分布的性质,如果Xi~N[μi,(δi)^2],则∑Xi~N[∑μi,∑(δi)^2](...
概率论与数理统计题目,求详解
如果做两次试验,那么满足题意的概率为 r*p 如果做了N次试验A相对于B先发生了,这说明前N-1次发生的只能是C,第n次发生的是A 此时概率为r^(n-1)p 综上满足题意的概率=p+r*p+r^2*p+……r^(n-1)p =p(1+r+r^2+……r^(n-1) )(括号内为等比数列)=p*(1-r^n)\/(1-r) ...
概率论与数理统计题,高分求解
第一问用全概率公式 α=抽中是甲厂的概率乘以又是合格品的概率率+抽中是乙厂的概率乘以又是合格品的概率+抽中是丙厂的概率乘以又是合格品的概率=(6\/20)0.8+(12\/20)0.7+(2\/20)0.6=0.72 第二问要用贝叶斯公式 β=(抽中甲厂的概率乘以又是合格品的概率)\/(抽中合格品的概率)=...
概率论与数理统计问题,拜托大神!
已经知道X~N(1,0.2^2),则(X-1)\/0.2~N(0,1),所以 (1)P(X>1)=1-P(X≤1)=1-P((X-1)\/0.2≤0)=1-φ(0)=0.5;(2)P(|X|<1)=P(-1<X<1)=P(-10<(X-1)\/0.2<0)=φ(0)-φ(-10)=0.5-0=0.5;(3)P(X<2)=P((X-1)\/0.2<5)=φ(5)=0。
概率论与数理统计中,这道题怎么做?大神求较,最好能有较详细的解释。
1、捆绑法 将一和二看成一个整体,组内排序共有A二二种可能。这时一共有三组,有A三三种可能。所以一和二相邻的情况数为A二二× A三三。总情况数为A四四。所以概率为二分之一。2、根据对称性,1号球在2号球左边的概率与右边的概率相 等,都为1\/2 ...
概率论与数理统计题目,大神现身!!!
f(x)=6x(1-x), 0<x<1.f(y|x)=1\/(1-x), x<y<1.f(x,y)=f(y|x)f(x)=[1\/(1-x)]6x(1-x) = 6x, 0<x<y<1; 0, 其它。f(y)= ∫[0,y] 6xdx = 3y^2, 0<y<1; 0, 其它。先做这些吧。
概率论与数理统计不会做,求帮助~
=0.08*1\/2+0.06*1\/3+0.04=0.1 (2)棉花和小麦至少有一样不减产,它的反命题是棉花和小麦都减产,所以所求概率为:1-P(A交B)=1-0.04=0.96 (3)棉花和小麦都不减产,事件可用A补交B补表示,则所求概率为:P(A补交B补)=P(((A补交B补)补)补)=P((A并B)补)=1-P(A并B)...
概率论与数理统计题求详细答案
郭敦荣回答:Y的概率密度F(y)=5\/7。
概率论与数理统计题,求解,急
计算题2。(1),由概率密度的性质,有∫(0,1)f(x)dx=1。∴A∫(0,1)x(1-x)³dx=1。而,∫(0,1)x(1-x)³dx=1\/20。∴A=20。(2),x<0时,F(x)=0;0≤x<1时,F(x)=∫(0,x)f(x)=20∫(0,x)x(1-x)³dx=10x²-20x³+(15x^4)-(4x^...