数学中有哪些著名的悖论?求解

如题所述

1-1 谎言者悖论
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。 《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。 人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:
1-2 “我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。它的一个翻版:
1-3 “这句话是错的”
这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。 哲学家罗素曾经认真地思考过这个悖论,并试图找到解决的办法。他在《我的哲学的发展》第七章《数学原理》里说道:“自亚里士多德以来,无论哪一个学派的逻辑学家,从他们所公认的前提中似乎都可以推出一些矛盾来。这表明有些东西是有毛病的,但是指不出纠正的方法是什么。在1903年的春季,其中一种矛盾的发现把我正在享受的那种逻辑蜜月打断了。” 他说:谎言者悖论最简单地勾画出了他发现的那个矛盾:“那个说谎的人说:‘不论我说什么都是假的’。事实上,这就是他所说的一句话,但是这句话是指他所说的话的总体。只是把这句话包括在那个总体之中的时候才产生一个悖论。” (同上) 罗素试图用命题分层的办法来解决:“第一级命题我们可以说就是不涉及命题总体的那些命题;第二级命题就是涉及第一级命题的总体的那些命题;其余仿此,以至无穷。”但是这一方法并没有取得成效。“1903年和1904年这一整个时期,我差不多完全是致力于这一件事,但是毫不成功。”(同上) 《数学原理》尝试整个纯粹的数学是在纯逻辑的前提下推导出来的,并且使用逻辑术语说明概念,回避自然语言的歧意。但是他在书的序言里称这是:“发表一本包含那么许多未曾解决的争论的书。”可见,从数学基础的逻辑上彻底地解决这个悖论并不容易。 接下来他指出,在一切逻辑的悖论里都有一种“反身的自指”,就是说,“它包含讲那个总体的某种东西,而这种东西又是总体中的一份子。”这一观点比较容易理解,如果这个悖论是克利特以为的什么人说的,悖论就会自动消除。但是在集合论里,问题并不这么简单。
1-4 理发师悖论
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。 这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。 反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。 因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。

(0)

回复
1楼
2011-03-27 03:28
举报 |
与数学悖论相关的贴子
226回复:一个关于数学归纳法的悖论问题:到底是第N天有N个红眼睛自杀..
16一个关于数学归纳法的悖论问题:到底是第N天有N个红眼睛自杀..
8一个关于数学归纳法的悖论问题:到底是第N天有N个红眼睛自杀...
10【数学】各智力题,变态题,悖论收集于此
81一个关于数学归纳法的悖论问题:

不离汝心
灭虫达人
6

2-2 二分法悖论
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。因此,这个物体永远也到达不了D。 这些结论在实践中不存在,但是在逻辑上无可挑剔。 芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。这就是说感官是不可靠的,没有逻辑可靠。 他认为:“穷尽无限是绝对不可能的”。根据这个运动理论,芝诺还提出了一个类似的运动佯谬:
2-3 “飞矢不动”
在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如:
2-4 “飞鸟之景,未尝动也”
这是中国名家惠施的命题,与“飞矢不动”同工异曲。这就是不可抗拒的推理和不可回避的实事相冲突。 德国哲学家尼采在《希腊悲剧时代的哲学》里有一章《可疑的悖论》,称芝诺的悖论为“否定感官的悖论”。尽管阿基里斯在赛跑中追上起步领先的乌龟完全合乎事实,但为什么“不合逻辑”?因为芝诺运用了“无限”这个概念,这是一种逻辑上的假设,而现实世界里是不可能有无限者存在的,这就出现了假设与现实的矛盾。 尼采说道:在这两个悖论里,“无限”被利用来作为化解现实的硝酸。如果无限是决不可能成为完善的,静止决不可能变为运动,那么,真相是箭完全没有飞动,它完全没有移位,没有脱离静止状态,时间并没有流逝。 换句话讲,在这个所谓的、终究只是冒牌的现实中,既没有时间、空间,也没有运动。最后,连箭本身也是一个虚象,因为它来自多样性,来自由感官唤起的非一的幻象。下面是尼采的分析: 假定箭拥有一种存在,那么,它就是不动的、非时间的、非造而有的、固定的、永恒的。这是一个荒谬的观念! 假定运动是真正的实在,那么,就不存在静止。因而,箭没有位置、没有空间。又是一个荒谬的观点! 假定时间是实在的,那么,它就不可能被无限地分割。箭飞行所需要的时间必定由一个有限数目的瞬间组成,其中每个瞬间都必定是一个原子。仍然是一个荒谬的观念! 尼采得出这样的结论:我们的一切观念,只要其经验所与的、汲自这个直观世界的内容被当作“永恒真理”,就会陷入矛盾。如果有绝对运动,就不会有空间;如果有绝对空间,就不会有运动;如果有绝对存在,就不会有多样性;如果有绝对的多样性,就不会有统一性。 事实上,这两个悖论中提到的这个“动与不动”的对立统一,今天都已经得到了完美的解决,这就是极限理论的诞生。牛顿在运动学研究时,初创微积分,但由于没有巩固的理论基础,出现了历史上的“第二次数学危机”。十九世纪初,法国科学家以柯西为首建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为微积分的坚定基础,运动问题也得到了合理的解释。 可以想见,在微积分和极限理论发明或被接受以前,人们很难解释这一运动佯谬。感官不同于思维,当希腊人用概念来判决现实的时候,如果逻辑与现实发生矛盾,芝诺指责感官为“欺骗”。当思维找不到合理解释的时候,直观的形式、象征或比喻都无济于事。尼采的分析虽然详细、精辟,但他无法把它们综合起来。

回复
3楼
2011-03-27 03:28
举报 |

不离汝心
灭虫达人
6

2-5 “一尺之捶,日取其半,万世不竭”
这是《庄子·天下》中惠施的一句名言。二千多年前中国古人同样运用了无限的概念。 战国名家宋国人惠施(约公元前370-前310)曾任梁国的宰相,论辩奇才,是庄子的朋友,和公孙龙并列为名家的代表人物。他的著作多已亡佚,只能从其他诸家的论述中看到他的言行片段。 惠施的学说强调万物的共相,因而事物之间的差异只是一种相对的概念,现存与惠施有关的奇怪命题,例如,“山与泽平”、“卵有毛”、“鸡三足”、“犬可以为牛”、“火不热”、“矩不方”、“白狗黑”、“孤驹未尝有母”等,都可以说是悖论,但是大部份没有留下具体的争辩过程。惠施的悖论在西方也很有影响。 毛泽东从辩证法的角度基本接受惠施无限可分的观点。一九***年八月十八日,他同哲学工作者谈话时说:“列宁讲过,凡事可分。举原子为例,不但原子可分,电子也可分。”又说:“电子本身到现在还没有分裂,总有一天能分裂的。‘一尺之捶,日取其半,万世不竭’,这是个真理。不信,就试试看。如果有竭就没有科学了。” 有人注意到,毛泽东十分偏爱这句话,如五十年代中期对家钱三强,一九***年八月同周培源、于光远,一九七三年、一九七四年接见杨振宁、李政道,等等,都提到这句话。?
2-6 “点一样多?”
“1厘米线段内的点与太平洋面上的点一样多” 多少哲学家、数学家都唯恐陷入悖论而退避三舍。二十三岁获博士学位的德国数学家康托尔(1845-1918)六年以后向无穷宣战。他成功地证明了:一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。由于无限,1厘米长的线段内的点,与太平洋面上的点,以及整个地球内部的点都“一样多”。 然而,康托尔的“无穷集合”与传统的数学观念发生冲突,遭到谩骂。直到一八九七年第一次国际数学家会议,他的成果才得到承认,几乎全部数学都以集合论为基础。罗素称赞他的工作“可能是这个时代所能夸耀的最巨大的工作。” 同时,集合论中也出现了一些自相矛盾的现象,尤其是罗素的理发师悖论,以极为简明的形式震撼了数学的基础,这就是“第三次数学危机”。此后,数学家们进行了不懈地探讨。 例如,一九九六年英国剑桥大学出版社出版了亨迪卡的《数学原理的重新考察》,这本书以罗素的《数学原理》(1903)为蓝本的,试图完善逻辑和数学基础。它主要阐述了亨迪卡和桑朵新创的IF(Independence-Friendly First-Order Logic)逻辑及其可能产生的影响。它挑战了许多公认的观念,如公理集合论作为数学理论的适当框架,对说谎者悖论也作了进一步的探讨。它是否将引 起一场逻辑和数学基础的革命?我们还将拭目以待. 这是第二部份:由一因多果片面推理引致的悖论和由名实相悖引起的悖 论。 (三)由一因多果片面推理引致的悖论 这种形式的悖论类似于诡辩。诡辩在现实中是令人厌恶的,但是在逻辑学的探讨中有相当的位置。孔多塞说:“希腊人滥用日常语言的各种弊端,玩弄字词的意义、以便在可悲的模棱两可之中困搅人类的精神。可是,这种诡辩却也赋予了人类的精神以一种精致性,同时它又耗尽了他们的力量来反对虚幻的难题。” 古希腊哲学流派中曾经有一个诡辩学派,又叫智者派。他们对自然哲学持怀疑态度,认为世界上没有绝对不变的真理。前面提到的普洛道格拉斯(Protagras,约公元前485-前410)是其著名的代表人物,他认为:“ 人是衡量万物的尺度。”雅典政府因其主张无神论,予以驱逐并焚烧了他的书籍。 从苏格拉底到亚里斯多德都反对诡辩学说,黑格尔说,苏格拉底常运用他的辩证法去攻击诡辩学派,尤其是普洛道格拉斯。尽管这些智者的理论多已失传,我们仍然可以从亚里斯多德的《形而上学》(吴寿彭译)中了解一些当时的论辩。 根据亚里斯多德的记载,柏拉图(Plato,公元前427-前347)曾说:诡辩是专讨论“无事物”的,因为诡辩派的论题老是纠缠于事物的属性。例如,“文明的”与“读书的”为同抑异,“文明的哥里斯可”与“哥里斯可” 是否相同?以及每一事物并不常是而今是者,是否便当成是,由兹而引致(悖解) 的结论(同上)。 斥形式逻辑而提倡辩证法的黑格尔(1770-1831)说柏拉图发明了辩证法。“柏拉图运用辩证法以指出一切固定的知性规定的有限性。他从一推演出多,但仍然指出多之所以为多,复只能规定为一。”(《小逻辑》) 亚里斯多德认为:凡现存的事物其生成与消失必有一个过程,而属性事物则不然。

回复
4楼
2011-03-27 03:28
举报 |

不离汝心
灭虫达人
6

然而,我们还得尽可能地追踪偶然属性之本质与其来由;也许因此可得明白何以不能成立有关属性的学术(《形而上学》卷六章二)。在他看来,诡辩理论就是“有关属性的学术”而不是“属性之本质与其来由”。 诡辩完善的是学术体系,而不是知识。孔多塞在《人类精神进步史表纲要人类精神进步史表纲要》(何兆武、何冰译)的《第四个时代》中说:然而希腊的智者和希腊的学人, “并没有发现真理,反而是在铸造各种体系;他们忽视了对事实的观察,为的是自己好投身于自己的想象之中;他们既然无法把自己的意见置于证明的基础之上,便力图以诡辩来维护它们。” 可见,诡辩学派的致命点就是忽略“本质”而纠缠“属性”,从现存的事物中推论出悖解的结论来,而不详细考察事物的真实,在实践的基础上加以证明。对付诡辩最好的方式是运用辩证法并在实践中加以考证。
3-1 “什么是诡辩?”
有学生问他的希腊老师:“什么是诡辩?”老师反问到:“有甲乙两人,甲很干净,乙很脏。如果请他们洗澡,他们中间谁会洗?” 这里有四种可能,一是甲洗,因为他有爱干净的习惯;二是乙洗,因为他需要;三是两人都洗,一个是因为习惯,另一个是因为需要;四是两人都没洗,因为脏人没有洗澡的习惯,干净人不需要洗。这四种可能彼此相悖,无论学生作出怎样的回答,老师都可以予以反驳,因为他不需要有一个客观的标准,这就是诡辩。
3-2 “父在母先亡”
这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”或者是“父亲在母亲以前就去世了。”真是左右逢源。 从逻辑顺序上看,上面这两个例子正好是反其道而用。无论正命题还是反命题都可以根据所谓的客观理由进行诡辩,形成自圆其说或诘难。所以葛拉西安在《智慧书:永恒的处世经典》中说:“诡辩是一种欺骗,乍一听,它蛮有道理,并因其刺激、新奇而令人心惊,但随后,当其虚饰之伪装被揭穿,就会自取其辱。”
3-3 邓析赎尸诡论
《吕氏春秋》记载了这样一个故事:洧水发了大水,淹死了郑国富户家的一员。尸体被别人打捞起来,富户的家人要求赎回。然而捞到尸体的人要价太高,富户的家人不愿接受,他们找邓析出主意。邓析说:“不用着急,除你之外,他还会卖给谁?”捞到尸体的人等得急了,也去找邓析要主意。邓析却回答:“不要着急,他不从你这里买,还能从谁那里买?” 邓析生在春秋末年,与老子和孔子基本同时,是战国名家的鼻祖,著名的讼师,他的著作已经失传。 同一个事实,邓析却推出了两个相反的结论,每一个听起来都合乎逻辑,但合在一起就荒谬了。邓析是不是希望他们相持一段时间后,双方都可以找到一个可以接受的价格平衡点?我们只能猜测。 后来,邓析被杀,就是因为子产认为他“以非为是,以是为非,是非无度,而可与不可日变”。可见,邓析是一个没有原则的人。身为讼师,邓析善于辞辩,而不跳出诡论寻找客观的解决办法。严谨的逻辑推理固然具有说服性,但最终还是要回到现实中来。
3-4 公孙龙论秦赵之约
《吕氏春秋》介绍过公孙龙的一个诡论:秦国与赵国订立条约:今后,秦国想做的,赵国帮助;赵国想做的,秦国帮助。不久,秦国兴师攻打魏国,赵国打算援救。秦王不高兴,差人对赵王说:秦国想做的,赵国帮助;赵国想做的,秦国帮助。现在秦国要打魏国,而赵国援救他们,这是违约。赵王把这个消息转告给平原君,平原君向公孙龙请教。公孙龙回答:“赵王也可以派人对秦王说:赵国打算援救魏国,现在秦国却不帮助赵国,这也不合乎条约。” 不管这个寓言的真实性如何,他的推理无懈可击。公孙龙对于秦赵之约的回应,与邓析赎尸诡论一脉相承。但公孙龙是站在弱小的赵魏这一边反对强秦的。 3-5 “彼亦一是非,此亦一是非。” 这是《庄子·齐物论》中的一句话,以强调事物的相对性而著称,比如,人睡在潮湿的地方会腰疼,但泥鳅会腰疼吗?人爬到高树上会胆怯,猿猴会胆怯吗?于是,他的结论是:“彼亦一是非,此亦一是非。”各有各的相对标准。 《团结报》曾经刊登过一篇一勺的《名师出高徒》。说康白情1919年前在北京大学选修马叙伦先生的“老庄哲学”,没有一次不迟到。有一次,马叙伦责问康白情为什么姗姗来迟。康白情回答:“住得太远。”马先生不以为然,反问道:从你的住处走到这里只要三、五分钟,怎么叫太远!康白情也不示弱,说:先生讲庄子,庄子说:“彼亦一是非,此亦一是非”。先生不以为远,而我以为远。

收起回复
5楼
2011-03-27 03:28
举报 |

蟑螂在咆哮18: 你好楼主,你少了3-5,能不能麻烦你发下,这段没看到我都急死了。谢谢楼主,楼主好人!
2012-11-25 23:29回复
我也说一句

不离汝心
灭虫达人
6

马叙伦一时无话可说。
3-6 “我没有受贿”
一个商人被控受贿。他宣称:“我没有受贿。” 显然,这个商人既是观察者也是被观察者。我们不知道他是以观察者的身份进行辩护,还是以被观察者的身份进行诡辩。这两种推论都合乎逻辑,如果没有别的证据,就不能判决(引自“Web Dictionary of Cybernetics and Systems”)。
3-7 囚犯诡论
甲乙两人偷东西,人赃俱物。他们被分开审问,可能的惩罚如下: 甲否认乙否认:甲、乙各一年监禁 甲否认乙承认:乙释放、甲五年监禁 甲承认乙否认:甲释放、乙五年监禁 甲承认乙承认:甲、乙各三年监禁 甲乙二囚犯都会想到对自己最有利的去做:以甲而言,甲若承认,最多三年监禁,如果乙也承认;双方都监禁三年;如果乙否认,甲马上获得自由。这个结果并不坏。这是博弈,乙也会同样这么想。如果甲改变主意,将冒监禁五年,而乙却获得自由;反之也一样。如果双方都改变主意,各监禁一年,也可以达到“共利”。 但是,这一决策的过程可能是无限的理性推理:假如我选择“共利”策略,我必定相信对方也将选择“共利”策略;假如我选择“私利”策略,对方也会选择“私利” 策略予以防范。这个“推己及人,推人及己”的过程可以无限地推下去,他的极限状态在博弈论里叫做“共享知识(CommonKnowledge)”,但是没有人可以达到这个状态,囚犯也摆脱不了这个悖论。 (四)由名实相悖引起的悖论 古代中国有不少经典的悖论都来自名家。名家是战国时期的一个学派,他们的学说在于循名责实,但结果也往往被认为是流于诡辩。名家始于邓析,后有惠施、公孙龙等大家。 在古希腊,亚里斯多德认为:辩证家与诡辩派穿着与哲学家相同的服装,但不是一回事。对于诡辩术,智慧只是貌似而已,辩证家则将一切事物囊括于他们的辩证法中,而“实是”也是他们所共有的一个论题;因而辩证法也包含了原属于哲学的这些主题。诡辩术和辩证法谈论与哲学上同类的事物,但哲学毕竟异于辩证法者由于才调不同,哲学毕竟异于诡辩术者则由学术生活的目的不同。哲学在切求真知时,辩证法专务批评;至于诡辩术尽管貌似哲学,终非哲学(《形而上学》卷四章一)。 冯友兰先生在《中国哲学简史》第八章《名家》里有专门的讨论。他认为,中国的“名家”不完全等同于西方的诡辩家、逻辑家或辩证家。如果说古希腊的辩证家和诡辩派专攻属性而不是本质的话,那么名家则在于研究“名”与“实”的关系,而且重“名”甚于重“实”是他们的精神实质。这里的 “名实”就是名目与实际。冯友兰认为中国的名家应该翻译为“School of Name”以示区别,我在《不列颠百科全书》上看到的正是这样翻译的。 名与实关系的争论对中国哲学的影响巨大,如“孔子有正名、老子有无名、墨子有取实予名的争辩”。除名家以为,荀子对古逻辑学的贡献也很大。 公孙龙的辩论执名为实,“专决于名”而不落实到经验的事物,看看他的雄辩,就会发现一些奇怪的问题。《庄子·秋水篇》提到,公孙龙曾经自夸:“困百家之知,穷众口之辩”。
4-1 “白马非马”
战国时赵国人公孙龙曾经著有《公孙龙子》一书,平原君礼遇甚厚。其“白马非马”和“坚白异同之辩”都是他的著名命题。 据说,公孙龙有一次骑马过关,把关的人对他说:“法令规定马不许过。”公孙龙回答说:“我骑的是白马,白马不是马,这可是两回事啊。”公孙龙的“白马”有没有过关,我们不得而知。从常人的观点来看,守关的兵士八成认为公孙龙是在诡辩。这也是一个逻辑上“莫能与辩”,现实中不能成立的例子。 冯友兰认为《公孙龙子》里的《白马论》对“白马非马”进行了三点论证: 一是强调“马”、“白”、“白马”的内涵不同。“马”的内涵是一种动物,“白”的内涵是一种颜色,“白马”的内涵是一种动物加一种颜色。三者内涵各不相同,所以白马非马。 二是强调“马”、“白马”的外延的不同。“马”的外延包括一切马,不管其颜色的区别;“白马”的外延只包括白马,有颜色区别。外延不同,所以白马非马。 三是强调“马”这个共相与“白马”这个共相的不同。马的共相,是一切马的本质属性,它不包涵颜色,仅只是“马作为马”。共性不同,“马作为马”与“白马作为白马”不同。所以白马非马。 前面我们说到,辩证法是在对付诡辩论的过程中发展起来的。

回复
6楼
2011-03-27 03:28
举报 |

不离汝心
灭虫达人
6

黑格尔在《小逻辑》中说:“辩证法切不可与单纯的诡辩相混淆。诡辩的本质在于孤立起来看事物,把本身片面的、抽象的规定,认为是可靠的。”(《逻辑学概念的进一步规定和部门划分》) 从辩证法的角度看,“白马非马”割断了个别和一般的关系。白马属于个性,特指白颜色的马;马属于一般,具有各种颜色马的共性。公孙龙区分了它们之间的差别,但是又绝对化了这种差别。白马尽管颜色上不同于其他的马,如公孙龙提到的黄马、黑马,但仍然是马。作为共性的“马”寓于作为个性的“白马”之中。“马”作为一般的范畴,包括各种颜色的马,公孙龙的白马自然也不例外。
4-2 “杀盗非杀人也”
这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非杀人也”归入“惑于用名以乱名”的诡辩。荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是杀人。
4-3 坚白石论
坚白石论指一块“坚白石”,它有坚、白、石三个要素组成。公孙龙主张“坚”为石头的特性,“白”为石头的颜色。眼睛看到的这块石头是白色的,手触摸到的这块石头才知到它是坚硬的;白色由视觉而得,坚硬由触觉而来,坚与白不能同时被认知。因此,公孙龙认为就一块坚白石而言,人不可能同时认识到其中三个组成要素:坚、白、石,而只能是坚石或白石。 这是从感知的角度来证明坚、白彼此分离,是分析方法的早期运用。“离坚白之辩”是古代中国的一个著名命题,习惯上人们并不接受,但是对于名家自身来讲,如果没有精密的思考,也不可能提出这些深刻的问题。 尽管名家在逻辑上的辩论天下无敌手,但是遭到诸家反对。庄子说他们:“饰人之心,易人之意,能胜人之口,不能服人之心,辩者之囿也。”《荀子》也认为:“虽辩,君子不听。”这的确是名家的吊诡。 中国古有名辩逻辑,唐代传入印度因明,近代又引进了西方逻辑,成为世界三大逻辑的汇合点。黑格尔在《小逻辑》里说:“一说到诡辩我们总以为这只是一种歪曲正义和真理,从一种谬妄的观点去表述事物的思想方式。但这并不是诡辩的直接的倾向。诡辩派原来的观点不是别的,只是一种‘合理化论辩’的观点。”这是针对古希腊人说的,对中国的名家来讲,同样适合。

参考资料来自http://tieba.baidu.com/p/1035637075
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-10-26
理发师悖论 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 说谎者悖论 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。 公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 跟无限相关的悖论 跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么? 预料不到的考试的悖论 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。” 你能说出为什么这场考试无法进行吗? 电梯悖论 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!” 这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦? 硬币悖论 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗? 谷堆悖论 谷堆悖论:显然,1粒谷子不是堆; 如果1粒谷子不是堆,那么2粒谷子也不是堆; 如果2粒谷子不是堆,那么3粒谷子也不是堆; …… 如果99999粒谷子不是堆,那么100000粒谷子也不是堆; …… 如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。这就是令整个古希腊震惊一时的谷堆悖论。 从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。 这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“Soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们? 宝塔悖论 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢? 鸡与蛋问题 世界上是先有鸡还是先有蛋? ○当然是先有鸡,只是刚开始它不是鸡,而是别的动物,后来它们的繁衍方式发生了变化,——成为了卵生,所以才有了蛋。 ○最早没有卵生动物,很多生物还是无性繁殖分裂的,后来慢慢进化成卵生和哺乳动物,所以按道理应该先进化成生物本体才可能有蛋的由来。本回答被提问者采纳

数学史上著名的悖论是什么数学史上著名的悖论介绍
1、数学中有许多著名的悖论,有伽利略悖论、贝克莱悖论、康托尔最大基数悖论、布拉里福蒂最大序数悖论、理查德悖论、集合论悖论、希帕索斯悖论等。2、理查德悖论:是法国第戎中学教师理查德在1905年发表了一个悖论,被用来显示仔细区分数学与元数学的重要性。贝克莱悖论:数学史上把贝克莱的问题称之为“贝克莱...

数学史上著名的悖论是什么
数学史上的著名悖论包括:1. 伽利略悖论:这个悖论并非由伽利略提出,而是后人以他的名字命名,主要讨论的是无限集合的问题。它揭示了在数学中,不同类型的无限并不总是等价的。2. 贝克莱悖论:这个悖论由17世纪哲学家乔治·贝克莱提出,它涉及到实数和有理数的关系,特别是无穷小量的问题。贝克莱悖论实际...

数学史上著名的悖论是什么数学史上著名的悖论介绍
1. 在数学领域,众多悖论广为人知,其中包括伽利略悖论、贝克莱悖论、康托尔最大基数悖论、布拉里福蒂最大序数悖论、理查德悖论、集合论悖论以及希帕索斯悖论等。2. 理查德悖论:1905年,法国第戎中学的教师理查德提出了这一悖论,它强调了在数学与元数学之间进行明确区分的重要性。3. 贝克莱悖论:在数学史...

数学研究的传统悖论有哪些?
数学研究的传统悖论有很多,以下是一些著名的悖论:1.罗素悖论(Russell'sParadox):由英国哲学家伯特兰·罗素提出的一个关于集合论的悖论。简单来说,罗素悖论指出,如果所有的集合都能被描述为自身的一个元素,那么这个集合是否也能被描述为自身的一个元素?这导致了对集合论的一些基本假设的质疑。2.康...

'十大悖论'有哪些
3. 鸡蛋的悖论:先有鸡还是先有蛋?这是一个经典的哲学问题,涉及到生命起源和进化论的话题。4. 书名的悖论:美国数学家缪灵写了一部标题为《这本书的书名是什么》的书,那么这本书的书名到底是什么呢?5. 印度父女悖论:女儿在卡片上写道:“今日下午三时之前,您将写一个‘不’字在此卡片上...

世界十大著名悖论
贝特朗箱子悖论,针对几何概念提出的1899年悖论,挑战几何直觉。蒙提霍尔悖论,数学游戏中的经典问题,涉及概率选择。生日悖论,数学概率论中的有趣问题,揭示概率背后的非直观结果。伊壁鸠鲁悖论,基督教怀疑论的核心,包含四个结论。格里芬悖论,美国知名经济学理论,探讨价值与现实的矛盾。斯托克代尔悖论,管理...

二十个有名的悖论
二十个有名的悖论如下:1. 罗素悖论:自指命题可能既真又假。例如,“这句话是假的”就是一个典型的自指命题,如果这个命题是真的,那它实际上在说谎;但如果它是假的,那它就是真的。2. 阿基里斯与乌龟:阿基里斯是跑得非常快的英雄,但当他与乌龟赛跑时,只要乌龟先跑,阿基里斯就...

'十大悖论'有哪些?
9. 薛定谔的猫:薛定谔的猫最早由物理学家薛定谔提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因...

有哪些经典的数学悖论?
数学悖论是指那些在逻辑上自相矛盾或引发矛盾思考的数学命题或理论。以下是一些经典的数学悖论:1.阿基里斯与乌龟:古希腊哲学家赞诺提出的问题,假设阿基里斯比乌龟快10倍,他们进行一场赛跑,乌龟领先100米。当阿基里斯跑到乌龟起点时,乌龟已经前进了10米;当阿基里斯跑到乌龟现在的位置时,乌龟又前进了1米...

古希腊哲学家 芝诺 的 四大数学悖论 是哪四个???
1,二分法悖论:任何一个物体要想由A点运动到B点,必须首先到达AB中点C,随后需要到达CB中点D,再随后要到达DB中点E。依此类推。这个二分过程可以无限地进行下去,这样的中点有无限多个。所以,该物体永远也到不了终点B。不仅如此,我们会得出运动是不可能发生的,或者说这种旅行连开始都有困难。因为...

相似回答