古希腊哲学家 芝诺 的 四大数学悖论 是哪四个?????

如题所述

1,二分法悖论:任何一个物体要想由A点运动到B点,必须首先到达AB中点C,随后需要到达CB中点D,再随后要到达DB中点E。依此类推。这个二分过程可以无限地进行下去,这样的中点有无限多个。所以,该物体永远也到不了终点B。不仅如此,我们会得出运动是不可能发生的,或者说这种旅行连开始都有困难。因为在进行后半段路程之前,必须先完成前半段路程,而在此之前又必须先完成前1/4路程......因此,物体根本不能开始运动,因为它被道路无限分割阻碍着。
2,阿基里斯追龟悖论:如果让乌龟先行一段路程,那么阿基里斯将永远追不上乌龟。
乌龟先行了一段距离,阿基里斯为了赶上乌龟,必须要到达乌龟的出发点A。但当阿基里斯到达A点时,乌龟已经向前进到了B点。而当阿基里斯到达B点时,乌龟又已经到了B前面的C点...........依此类推,两者虽越来越接近,但阿基里斯永远落在乌龟的后面而追不上乌龟。
3、飞矢不动悖论:任何一个东西呆在一个地方那不叫运动,可是飞动着的箭在任何一个时刻不也是呆在一个地方吗?既然飞矢在任何一个时刻都能呆在一个地方,那飞矢当然是不动的。
4、运动场悖论。芝诺提出这一悖论可能是针对时间存在着最小单位一说(现在的普朗克—惠勒时间 Planck-Wheeler time)。对此,他做出如下论证:设想有三列实体,最初它们首尾对齐。设想在最小时间单元内,C列不动,A列向左移动一位,B列向右移动一位。相对B而言,A移动了两位。就是说,我们应该有一个能让B相对于A移动一位的时间。自然,这时间是单元时间的一半,但单元时间是假定不可分的,那么这两个时间就是相同的了,即最小时间单元与他的一半相等。
温馨提示:内容为网友见解,仅供参考
无其他回答

古希腊哲学家 芝诺 的 四大数学悖论 是哪四个???
4、运动场悖论。芝诺提出这一悖论可能是针对时间存在着最小单位一说(现在的普朗克—惠勒时间 Planck-Wheeler time)。对此,他做出如下论证:设想有三列实体,最初它们首尾对齐。设想在最小时间单元内,C列不动,A列向左移动一位,B列向右移动一位。相对B而言,A移动了两位。就是说,我们应该有一个...

芝诺的四个著名悖论
芝诺的四个著名悖论是:二分法悖论、阿基里斯悖论、飞矢不动、游行队伍悖论。1、二分法悖论:一个人在到达目的地之前,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2。按照这个要求可以无限循环的进行下去。因此有两种情况:①这个人根本没有出发;②只要他出发了,就永远到不了终...

芝诺的四大悖论中除了飞矢不动和阿基里斯追龟外,另外的两个是什麽?
二分法悖论:运动是不可能的,因为运动的物体在到达目的地之前必须到达路程的中间点,而在它到达中间点之前,他又必须到达路程的四分之一点,等等,没有穷尽。因此运动甚至永远不能开始。阿基里斯(希腊的神行太保)悖论:奔跑中的阿基里斯永远也不能超过在他前面慢慢爬行的乌龟,因为他必须首先到达乌龟的出...

芝诺悖论一组四个?是那四个?
关于芝诺提出悖论一共是四个.“两分法”:向着一个目的地运动的物体,首先必须经过路程的中点;然而要经过这点,又必须先经过路程的四分之一点;要过四分之一点又必须首先通过八分之一点等等,如此类推,以至无穷。结论是:无穷是不可穷尽的过程,运动永远不可能开始的。“阿基里斯追不上乌龟”: 阿...

简述古希腊哲学家芝诺的关于运动的四个悖论以及僧肇的物不迁论,并用...
飞矢不动悖论:一支飞行的箭是静止的。由于每一时刻这支箭都有其确定的位置因而是静止的,因此箭就不能处于运动状态。游行队伍悖论:假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。□□□ 观众席A ■■■ 队列B……向右移动 ▲▲...

古希腊四大悖论详细资料大全
阿奚里追龟 阿奚里是希腊传说中的一个善走的神。可芝诺却声言,虽然阿奚里走的速度很快, 假设10倍于龟,但却永远追不上徐徐前进的乌龟。他的理由是:开始时,乌龟在阿 奚里前面10里,当阿奚里走完这10里时,在这段时间里,乌龟又向前走了1里;而当 阿奚里再走完这1里时,乌龟又向前...

我们应该如何看待芝诺的四个悖论
一、不可否认的是,芝诺四大悖论无疑是错误的,其通病在于采取孤立、静止和片面的形而上学观点看问题,因而是错误的。二、芝诺悖论介绍 1.二分法:穿过一定距离的全部之前,你必须穿过这个距离的一半,传个这个距离的一半之前,你必须穿过一半的一半,即你必须穿过无限多个中点,因而你不可能在有限的时间里...

芝诺悖论有哪几个?
芝诺悖论有四:二分法,阿基里和乌龟赛跑,飞矢不动,一倍的时间等于一半的时间。

四个悖论概述
芝诺提出的四个悖论,旨在维护巴门尼德关于“存在”是不动的“一”的学说,旨在否认运动。这些悖论揭示了时间、空间和运动之间的复杂关系,挑战了人们的直觉和逻辑推理。在现实生活中,我们容易理解奥运会短跑冠军可以轻松追上在距离上领先自己的乌龟。然而,芝诺悖论揭示了门都没有,即使二者同时出发,阿喀...

悖论界四大神兽
芝诺的乌龟是芝诺悖论中的形象,它以身体劣势为由,申请提前奔跑100米,但最终却被阿喀琉斯追上并杀死。这个悖论揭示了人们对于时间、速度和距离的认知存在一些误解和矛盾。拉普拉斯的妖是一种假设中的智能生物,它能够推演出过去和未来。这个假设最初是由法国数学家拉普拉斯提出的,他认为如果有一个智能...

相似回答