什么是芝诺悖论?刘徽的割圆术是怎么一回事?高等数学中的极限有什么意义?

如题所述

(一)芝诺悖论(Zeno's paradoxes)

芝诺悖论是由古希腊哲学家芝诺(Zeno)提出的一组悖论。其中的几个悖论还可以在亚里士多德(Aristotle)的《物理学》(Physics)一书中找到。最有名的是以下两个。

阿基里斯与乌龟的悖论(Achilles and the tortoise
Paradox):在跑步比赛中,如果跑得最慢的乌龟一开始领先跑得最快的希腊勇士阿基里斯,那么乌龟永远也不会被阿基里斯追上。因为要想追到乌龟,阿基里斯必须先到达乌龟现在的位置;而等阿基里斯到了这个位置之后乌龟已经又前进了一段距离。如此下去,阿基里斯永远追不上乌龟。

二分法悖论(Dichotomy Paradox):运动是不可能的。你要到达终点,必须首先到达全程的 1/2 处;而要到达 1/2 处,必须要先到 1/4
处??每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。其实,你根本连动都动不了,运动是不可能的。

罗素(Bertrand
Russell)曾经说过,这组悖论“为从他那时起到现在所创立的几乎所有关于时间、空间以及无限的理论提供了土壤”。阿尔弗雷德·诺斯·怀特海德(Alfred
North
Whitehead)这样形容芝诺:“知道芝诺的人没有一个不想去否定他的,所有人都认为这么做是值得的”,可见争议之大。无数热爱思考的人也被这些悖论吸引,试图给这些出人意料的结论以合理的解释。

当古希腊哲学家第欧根尼(Diogenes)听到芝诺的“运动是不可能的”这个命题时,他开始四处走动,以证明芝诺的荒谬,可他并没有指出命题的证明错在哪里。

亚里士多德对阿基里斯悖论的解释是:当追赶者与被追者之间的距离越来越小时,追赶所需的时间也越来越小。他说,无限个越来越小的数加起来的和是有限的,所以可以在有限的时间追上。不过他的解释并不严格,因为我们很容易举出反例:调和级数
1+1/2+1/3+1/4+…… 的每一项都递减,可是它的和却是发散的。

阿基米德(Archimedes)发明了一种类似于几何级数求和的方法,而问题中所需的时间是成倍递减的,正是一个典型的几何级数,所以追上的总时间是一个有限值。这个悖论才总算是得到了一个过得去的解释。直到
19 世纪末,数学家们才为无限过程的问题给出了一个形式化的描述。

尽管我们可以用数学方法算出阿基里斯在哪里以及什么时候追上乌龟,但一些哲学家认为,这些证明依然没有解决悖论提出的问题。出人意料的是,芝诺悖论在作家之中非常受欢迎,列夫·托尔斯泰在《战争与和平》中就谈到了阿基里斯和乌龟的故事,路易斯·卡罗尔(Lewis
Carroll)写了一篇阿基里斯和乌龟之间的对话,阿根廷作家豪尔赫·路易斯·博尔赫斯(Jorge Luis
Borges)也多次在他的作品中谈到阿基里斯悖论。
(二)刘徽的割圆术是怎么一回事?
“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。
即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率。

(三)
如果当自变量x无限接近实数x0时,函数值f(x)无限接近某个常数A,我们称这个常数A为当x→x0时,函数f(x)的极限,记作:
limf(x)=A。
温馨提示:内容为网友见解,仅供参考
第1个回答  2016-04-13
自己求导吧。
第2个回答  2016-04-13
我来暖贴了
第3个回答  2016-04-13
我就是进来看看就走

什么是芝诺悖论?刘徽的割圆术是怎么一回事?高等数学中的极限有什么意义...
(二)刘徽的割圆术是怎么一回事?“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确...

高中数学《数列的极限》教学设计_高中数学数列极限
情境1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。 情境2、我国古代哲学家庄周所著的《庄子・天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切...

比较无穷小量:Inx和x-1,x趋于1?
魏晋时期最伟大的数学家刘徽发明了割圆术来计算圆周的精确数值。随后,割圆术被南北朝时期的数学家祖冲之发挥到了极致。他计算出圆周率介于3.1415926至3.1415927之间这一惊人的成就。这一成果甚至领先外国1000多年。阿基米德与欧几里得(图片来源:百度图片)古希腊的数学在历史上留下了无数绚丽的瑰宝,但随着希腊文明的衰落,...

有趣数学历史
这个故事形象的说明了时间和空间的相对性 6刘徽的贡献和地位 刘徽的工作不仅对中国古代数学的发展产生了深远的影响,而且在世界《九章算术》影响,支配中国古代数学的发展1000余年,是东方数学的典范之一,与希腊欧几里得的《原本》所代表的古代西方数学交相辉映。鉴于刘徽的巨大贡献,所以不少书上把他称为“中国数学史上的...

渗透数学文化 提升数学素养
刘徽的割圆术,为圆周率的计算打下理论基础;负数的应用以我国最早,东汉时期就已用赤筹表示正数、用黑筹表示负数;元代朱世杰的《算学启蒙》给出了正负数的乘除法则,还解释二次方程;《九章算术》中用“盈不足”的方法解二元一次联立方程;1600年前的《孙子算经》中还介绍了不定方程的求解方法,称之为“大衍求一术...

高等数学(第2版)目录
五、极限在医药学上的应用 第四节 函数的连续性 一、连续函数的概念 二、函数的间断性 三、初等函数的连续性 相关链接:从割圆术到阿基米德公设 习题一 第二章 导数与微分 第一节 导数的概念 一、两个实例 二、导数的定义 三、导数的几何意义 四、函数的连续性与可导性的关系 五、基本初等函数...

急需:有关埃及相关知识的中英文对比介绍.
这提供了求圆面积的近似方法,和中国的刘徽的割圆术思想不谋而合。 公元前三世纪,柏拉图在雅典建立学派,创办学园。他非常重视数学,但片面强调数学在训练智力方面的作用,而忽视其实用价值。他主张通过几何的学习培养逻辑思维能力,因为几何能给人以强烈的直观印象,将抽象的逻辑规律体现在具体的图形之中。 这个学派培养...

相似回答