(1+2)\/2x(1+2+3)\/(2+3)x(1+2+3+4)\/(2+3+4)x...x
=(n^2+n)\/(n^2+n-2)=n(n+1)\/(n+2)(n-1)所以[(1+2)\/2]*[(1+2+3)\/(2+3)]*[(1+2+3+4)\/(2+3+4)]*...*[(1+2+3+...+50)\/(2+3+...+50)]=(2*3\/1*4)*(3*4\/2*5)(4*5\/3*6)...(49*50\/48*51)(50*51\/49*52)=3*50\/52 =75\/26 ...
(1+2)\/2*(1+2+3)\/(2+3)*(1+2+3+4)\/(2+3+4)*…(1+2+3+…1993)\/(2+3+...
解答:取An=[1+2+3+...+(n+1)]\/[2+3+...+(n+1)][n≥1,n∈Z] ,则 An=0.5(n+1)(n+2)\/[0.5(n+1)(n+2)-1]=(n+1)(n+2)\/n(n+3),原式=A1×A2×A3×...×An =[(2×3)\/(1×4)]×[(3×4)\/(2×5)]×[(4×5)\/(3×6)]×...×[(n+1)(n+...
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...+1999) 简便
解题思路:1+2=2*3\/2 1\/(1+2)=2\/(2*3)=2*(1\/2-1\/3)1+2+3=3*4\/2 1\/(1+2+3)=2\/(3*4)=2*(1\/3-1\/4)………1+2+3+……+1999=1999*2000\/2 1\/(1+2+3+……+1999)=2*(1\/1999-1\/2000)解:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+....
...1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2004)
1\/(1+2+3+...+n)=1\/[n(n+1)\/2]=2\/[n(n+1)]=2[1\/n-1\/(n+1)]1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2004)=2(1\/2-1\/3+1\/3-1\/4+...+1\/2004-1\/2005)=2(1\/2-1\/2005)=1-2\/2005 =2003\/2005 ...
1+(1+2)+(1+2+3)+……+(1+2+3+…… n) 共有n个。(化简)
用数列的方法做 1=1*(1+1)\/2 1+2=2*(1+2)\/2 1+2+3=3*(1+3)\/2 ...1+2+3+...+n=n*(1+n)\/2 S=1+(1+2)+(1+2+3)+...+(1+2+3+...+n)=1*(1+1)\/2+2*(1+2)\/2+3*(1+3)\/2+...+n*(1+n)\/2 =1\/2*{(1平方+2平方+3平方+...+...
请用小学方法计算:1+(1+2)+(1+2+3)+(1+2+3+4))+(1+2+3+4+5)+...+...
原式=1×100+2×99+3×98+4×97+……+99×2+100×1 =2×(1×100+2×99+3×98+……+50×51)=2×[1×(101-1)+2×(101-2)+3×(101-3)+……+50×(101-50)]=2×[(1+2+3+4+……+50)×101-(1×1+2×2+3×3+……+50×50)]=2×[(1+50)×50÷2×...
...+4\/[(1+2+3)*(1+2+3+4)]+...+100\/[(1+2+...+99)*(1+2+...+100...
1\/[n*(n+1)]=1\/n-1\/(n+1)1\/[n*(n+2)]=1\/2{1\/n-1\/(n+2)} 即 1\/[n*(n+m)]=1\/m{1\/n-1\/(n+m)} 你可以自己代数字 试一试 所以 该题 原式=1\/1-1\/3+1\/3-1\/6+...+1\/(99*100\/2)-1\/(100*101\/2)=1-1\/5050=5049\/5050 ...
...3)+ ...+ (2+ 3+ 4+ ...+ 2014)\/(1+ 2+ 3 +... +2014)=?
1\/6+2\/6+3\/6+4\/6+5\/6=(1\/6+5\/6)+(2\/6+4\/6)+3\/6=1+1+1\/2 应该能看出规律了吧 那么7为分母的结果为1+1+1 8为分母的结果为1+1+1+1\/2 9的为1+1+1+1 10的为1+1+1+1+1\/2 所以原式=1\/2+2\/2+3\/2+……+59\/2 =(1+2+……+59)\/2 =59*60\/2\/2 =885 ...
1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4+...+2004)
首先分析得知,分子都是1,分母则是一个等差数列的前n项和,一共是2004项求和,设A1=1,An=1\/(n*(1+n)\/2)=2\/(n*(n+1))=2\/n-2\/(n+1),1+1/(1+2)+1/(1+2+3)...1\/(1+2+3+4+...+2004)=(2\/1-2\/2)+(2\/2-2\/3)+(2\/3-2\/4)+...+(2\/2004-2\/2005)=...
数列1,1\/1+2,1\/1+2+3,1\/1+2+3+4 ... 1\/1+2+3+4+...+n,...的前n项的...
1+2+……+n=n(n+1)\/2 所以1\/(1+2+……+n)=2\/n(n+1)=2*[1\/n-1\/(n+1)]所以原式=2*(1\/1-1\/2)+2*(1\/2-1\/3)+2*(1\/3-1\/4)+……+2*[1\/n-1\/(n+1)]中间正负抵消 =2*[1-1\/(n+1)]=2n\/(n+1)