求数列{1\/n(n+1)(n+2)}的前n项和Sn 怎么计算
简单分析一下即可,详情如图所示
求数列{1\/n(n+1)(n+2)}的前n项和Sn
通项公式为An=1\/n(n+1)(n+2)=[1\/n(n+1)-1\/(n+1)(n+2)]\/2 所以Sn=[1\/1*2-1\/2*3]\/2+ [1\/2*3-1\/3*4]\/2+[1\/3*4-1\/4*5]\/2+ ……+[1\/(n-1)*n-1\/n*(n+1)]\/2+ [1\/n(n+1)-1\/(n+1)(n+2)]\/2 =[1\/1*2-1\/(n+1)(n+2)]\/2 =1...
已知数列an=1\/n(n+1)(n+2),求数列的前n项和Sn 最好利用裂项法
=1\/2{[(n+2)\/[n(n+1)(n+2)]-n\/[n(n+1)(n+2)]=1\/2{1\/[n(n+1)]-1\/[(n+1)(n+2)]} 所以Sn=1\/2*{1\/1*2-1\/2*3+1\/2*3-1\/3*4+……+1\/[n(n+1)]-1\/[(n+1)(n+2)]} =1\/2*{1\/1*2-1\/[(n+1)(n+2)]} =(n²+3n)\/(2n²+6n+4...
求前n项和1\/n(n+1)(n+2)
1\/n(n+1)(n+2)=1\/n*[1\/(n+1)-1\/(n+2)]所以前n项和 Sn=1\/(1X2)-1\/(1X3)+1\/(2X3)-1\/(2X4)+...+1\/[n(n+1)]-1\/[n(n+2)]=1\/(1X2)+1\/(2X3)+...+1\/[n(n+1)]-{1\/(1X3)+1\/(2X4)+...+1\/[n(n+2)]} =1-1\/2+1\/2-1\/3+...+1\/n-1\/(...
若数列an的通项为1\/n(n+1)(n+2),求an的前n项和
简单计算一下即可,详情如图所示
已知an=1\/(n+1)(n+2),求an的前n项和sn
an=1\/(n+1)(n+2)a1=1\/(1+1)(1+2)=1\/2-1\/3 an的前n项和sn=[1\/(1+1)-1\/(1+2)]+[1\/(2+1)-1\/(2+2)]+……+[1\/(n+1)-1\/(n+2)]=1\/(1+1)-1\/(n+2)=n\/(2n+4)
已知数列的通项公式为〔1\/(n+1)(n+2)〕。求前N项和。
a(n) = 1\/[(n+1)(n+2)] = 1\/(n+1) - 1\/(n+2)S(n) = a(1) + a(2) + ... + a(n)= 1\/2 - 1\/3 + 1\/3 - 1\/4 + ... + 1\/(n+1) - 1\/(n+2)= 1\/2 - 1\/(n+2)= n \/ [2(n+2)]...
数列{1\/(2n+1)(2n+2)}的前n项和怎么求 要具体过程
只能告诉你这是裂项求和首先{1\/(2n+1)(2n+2)}可以变成1\/(2n+1)--1\/(2n+2)后面递减就可以了,应该能得到一个(1\/n-1\/(n+1))关系。。后面得到1--1\/(n+1)应该是这样这种问题应该自己多做,然后就知道用什么方法了
求数列{n(n+1)(n+2)}的前n项和sn
1×2×3×4+2×3×4×5+…+(n-1)n(n+1)(n+2)+n(n+1)(n+2)(n+3)相减得0=1×2×3×4+4[2×3×4+3×4×5+n(n+1)(n+2)]-n(n+1)(n+2)(n+3)即0=24+4[Sn-1×2×3]-n(n+1)(n+2)(n+3)解得Sn=n(n+1)(n+2)(n+3)\/4 ...
如何对1除以n(n+1)(n+2)进行裂项求和?
简单分析一下,答案如图所示